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Abstract

This deliverable is a final report on the experimental results obtained by using structural
features to characterize executable code. It discusses and evaluates a number of tech-
niques, based on these features, that have been developed in the context of the wombat
project, and aim to provide a deeper understanding of malicious code and of the relations
between malicious code samples.



1 Introduction

As the data collected by several wombat partners shows, there is an exponential ex-
plosion of the number of newly available malicious software (malware) per day. For
instance, the amount of samples submitted to VirusTotal [4], an online service to an-
alyze suspicious files with more than 40 antivirus engines, is nowadays in the order of
about three million samples per month. Several antivirus vendors also report a growing
number of samples that need to be examined on a daily basis in order to keep up with
the latest attacks [25, 37].

Such a large number of samples can be partially explained by the easiness with which
malware writers can generate new code forks by personalizing existing code bases, or
by re-packing existing binaries using code obfuscation tools [21, 27, 39], or the use of
polymorphic techniques [6]. As a result, one malware family can be responsible for tens
of thousands of samples per month.

For this reason, the development of novel techniques to quickly assess whether or not
a given sample is a minor variant of a well-known malware family or a novel sample
is an important research result, to which wombat partners dedicated some effort. We
needed low-cost techniques allowing us to easily cope with the large number of malware
instances produced by polymorphic techniques and to easily distinguish them from new
malware variants. Only by discerning these two cases will the security analyst be able to
prioritize the usage of more costly analysis tools on potentially new code bases. Within
the wombat project, we developed novel techniques to take advantage of information
about the structure of a given malware sample. This information can be used in many
different ways, for example to cluster a given set of samples based on structural similar-
ity, or to generate a behavioral fingerprint that can then be statically matched against
the structure of a set of malware samples. These techniques can then for example be
used to quickly determine whether a given sample needs to be analyzed by costly dy-
namic analysis, or whether static analysis techniques can already extract enough useful
information about the sample.

The purpose of this document is to present the results we obtained by analyzing the
structural features introduced in Deliverable 11 to assess the novelty of a given sample
and obtain a preliminary analysis of it. The document is structured as follows: Chap-
ter 2 is split into two sections which discuss different approaches for clustering malware
samples based on static, structural features of a given malware sample. Section 2.1 in-
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troduces a technique that is solely based on static characteristics that can be inferred by
the analysis of the Portable Executable (PE) format headers of Windows executables.
The intuition is that headers of executable files are typically not modified by different
samples of the same (polymorphic) malware family since even polymorphic packers do
not perform any kind of relinking and thus certain static features stay constant. Sec-
tion 2.2 introduces a complementary technique, namely content-based static malware
clustering. We then compute the pairwise difference between all samples and use this
information as a metric to cluster malware samples into families.

Chapter 3 describes how Argos, a containment environment for worms and manual
system compromises, was extended for structural analysis of the shellcode collected dur-
ing an attack. This extension is able to analyze shellcode and extract the different layers
of unpacking that it employs and the final “real” shellcode that performs useful actions
for the attacker.

Chapter 4 reports on the results of a novel approach to combine static and dynamic
analysis to enhance the analysis process. The basic insight is that the results of dynamic
analysis can also be leveraged to enhance static analysis: based on the results of dy-
namic analysis we can extract specific control flow information to fingerprint the code
itself. This fingerprint can then also be recognized in different, but related malicious
code samples. The research brought good results and led to publication in the IEEE
Symposium on Security and Privacy.

Finally, Chapter 5 draws our conclusions on the works presented in the Deliverable.

FP7-ICT-216026-WOMBAT 9



2 Static Clustering

This Chapter reports on two different approaches for clustering malware samples based
on static features.

2.1 Feature-based Clustering

In Deliverable D11 we introduced a simple, but fast algorithm allowing to group together
samples likely to be polymorphic instances of the same malware variant. The technique
clusters malware samples by looking at a set of static characteristics that can be inferred
by the analysis of the file characteristics and the analysis of the PE headers of Windows
executables.

The intuition underlying this clustering algorithm derives from our experience in look-
ing at the samples collected by the SGNET data set and at their features. We have seen
that all the polymorphic techniques observed in the SGNET malware repository tend
to randomize a limited amount of features of an attack event. The malware writer has
to face the tradeoff between the desire of making the detection of the sample as difficult
as possible and the practical cost of randomizing its different features. For instance,
the polymorphic packer used by the Allaple worm [13] obfuscates and randomizes the
data and code sections of each malware instance, but does not perform more expensive
operations such as relinking. While the binary content changes at every propagation
attempt, the headers of the executable files are not modified and have some immutable
characteristics.

Deliverable D11 introduced therefore the idea of “feature-based” clustering, consisting
in the automated discovery of invariants over multiple propagations of a specific malware
sample. While we are applying the technique specifically to the static characteristics of a
malware sample, such methodology is sufficiently generic to be applied to different data
types. We will show in Deliverable D18 how we have been able to apply the very same
methodology to the propagation context information in order to classify the different
propagation vectors.

As described in Deliverable D11 and exemplified in Figure 2.1, the feature-based
clustering algorithm starts from information on each propagation event (in this case,
focusing on the malware static features) and on the frequency and localization of the
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2.1 Feature-based Clustering

59904
59904
59904
65402
65402

3
3
3
4
4

kernel32.dll
kernel32.dll
kernel32.dll
kernel32.dll
kernel32.dll

MD5 Size NSect DLLs

51ae2cf41b666137c0f3f63c08bd4f42
09461eb9bb930abf66f9c3358aeabd6a
3262d7ec241c75891471e7309436254f
18777613abafd7d76ba8a7bfe7260b8a
18777613abafd7d76ba8a7bfe7260b8a

*
18777613abafd7d76ba8a7bfe7260b8a

59904
65402

3
4

kernel32.dll
kernel32.dll

Figure 2.1: Pattern discovery starting from a limited number of invariants (in bold)

Feature # invariants

File MD5 57
File size in bytes 95
File type according to libmagic signatures 7
(PE header) Machine type 1
(PE header) Number of sections 8
(PE header) Number of imported DLLs 7
(PE header) OS version 1
(PE header) Linker version 7
(PE header) Names of the sections 43
(PE header) Imported DLLs 11
(PE header) List of referenced Kernel32.dll symbols 15

Table 2.1: Selected features

event in the dataset (how many times a specific malware sample was downloaded, and
the number of targets and attackers involved in its propagation). Then, the methodology
discovers frequent patterns through 4 separate phases.

1. Feature definition. We define a set of features for each item that we believe to
be of interest, and likely to be difficult to randomize by a polymorphic engine. For
instance, we consider the content of several PE header fields as reported by PEFile
[8].

2. Invariant discovery. Each of these features may or may not be randomized by
a polymorphic engine. For instance, a non-polymorphic sample will maintain the
same MD5 hash over multiple propagation attempts while a polymorphic sample
will change its content at every propagation. We need to discover invariants, i.e.

FP7-ICT-216026-WOMBAT 11



2 Static Clustering

non-randomized feature values that can be useful in recognizing a specific malware
family. In practice, we consider a feature as invariant if a feature does not change
its value across different attack instances (i.e., it is witnessed in multiple code
injection attacks in the dataset), different attacking sources (i.e., the same value is
used by multiple attackers in different attack instances) and different targets (i.e.,
multiple honeypot IPs witness the same value in different instances). An invariant
value is therefore a “good” value that can be used to characterize a certain event
type. Invariant values are represented in bold in Figure 2.1.

3. Pattern discovery. Once the invariant values have been identified for each fea-
ture, we need to discover the patterns generated by their combination in their
dataset. The patterns are discovered by listing all the possible combinations of
invariant values, obtained by replacing any non-invariant value with a don’t care
(’*’) field. For instance, Figure 2.1 leads to the identification of two patterns:
{∗, 59904, 3, kernel32.dll} and {18777613...b8a, 65402, 4, kernel32.dll}.

4. Pattern-based classification. Finally, all the identified patterns are applied as
classifiers to the original event. If multiple patterns match the very same event
(i.e., malware sample), the most specific one is used.

2.1.1 Results

As originally reported in Deliverable D11, we have applied the previously described
algorithm to all the malware samples collected by the SGNET deployment. The pattern
generation was carried out over 11 different features, listed in Table 2.1. We have been
able to corroborate and update the early results that were already provided in Deliverable
11 by classifying 7521 distinct malware samples collected by the deployment and that
proved to be valid executable files when executed in Anubis.

First and foremost, the approach proved indeed to be practical and led to the iden-
tification of a total of 267 distinct malware classes. The high compression ratio with
respect to the original number of malware samples proves that the method is able to
cope with the randomization introduced by polymorphic engines in an effective way.

Table 2.2 offers a breakdown of the relationships between malware samples and mal-
ware classes according to the number of invariant values associated to each pattern. Out
of 11 features, we are able to generate patterns with 9 or more invariants in 93% of the
cases: this is a clear indicator of the low level of sophistication of nowadays polymorphic
engines.

Since the file hash is one of the features, we are able to clearly identify a total of 60
classes and 60 samples whose hash does not mutate over multiple propagations. These

12 SEVENTH FRAMEWORK PROGRAMME



2.1 Feature-based Clustering

# of invariants # of clusters # of samples
11 60 60
10 42 833
9 129 6072 (81% accumulated samples)
8 24 526
7 7 20
6 3 6
5 1 1

Table 2.2: Degrees of freedom in the clusters
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Figure 2.2: Histogram representing the distribution of the size of each identified class in
terms of number of distinct samples grouped into it.
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2 Static Clustering

samples are therefore non-polymorphic. For the polymorphic samples identified by our
method, Figure 2.2 graphically represents the size of the malware classes identified by
feature-based clustering in terms of number of distinct samples grouped in each class.
Most samples are grouped into few, large clusters likely to be associated to very popular
and highly visible polymorphic worms, such as Allaple. The 15 biggest malware classes
group a total of 4911 samples, corresponding to 65% of the total. This result underlines
the importance of utilizing similar methodologies when analyzing large collections of
malware samples: they indeed reduce the task of analyzing thousands of samples to
the analysis of a few representatives of each identified malware class, canceling the bias
introduced by polymorphic techniques.

2.2 Content-based Static Malware Clustering

A single approach to the malware clustering problem is not always enough. The method
discussed in the previous section is effective in the case of polymorphic families, where
the content of the PE sections changes dramatically from sample to sample but the PE
structure remains similar. However, it is not straightforward to define relationships be-
tween the different malware groups. The static clusters generated by the feature-based
clustering can be associated to simple recompilations of the same code base, such as
different personalizations of the Spybot source code in order to support different Com-
mand and Control servers. They can equivalently be representing completely different
malware variants, with different features and characteristics. It is difficult, or maybe
impossible, to infer from simple features of the malware sample the type of relationship
among the different clusters. We have therefore considered a complementary technique,
able to fully inspect the malware content in order to infer the amount of overlap among
different samples.

2.2.1 Measuring Sample Similarity

The first thing we need to do before we can implement an algorithm for grouping similar
samples is to define a way to measure the degree of similarity between two of them.
From now on, we will refer to this degree of similarity as the distance between the two
samples. The more similar the samples, the smaller the distance between them.

Our problem here is finding a good way of calculating this distance. A common
approach to define a distance between two arbitrary sequence of bytes is using the length
of their Longest Common Sub-sequence (LCS). But the existing algorithms to calculate
the LCS are O(n2), and therefore, slow for practical purposes. Note that this would be
the cost only for the comparison, not for the entire clustering (see Section 2.2.3).

14 SEVENTH FRAMEWORK PROGRAMME



2.2 Content-based Static Malware Clustering

This is when delta algorithms come into play. Delta algorithms are aimed to receive
two files and generate a set of instructions that can be used to convert one of the files
into the other. In theory, delta algorithms are strongly related to finding the LCS of the
two files, because finding the optimum set of instruction to convert a file into the other
requires solving the LCS problem. In practice however, most delta algorithms sacrifice
the optimality of the solution in favor of execution speed.

Algorithm 1 delta(F1,F2)
N ← 0
i← 0
while F1[i] = F2[i] do

if i = s2 then
return 0

i← i+ 1
for i ≤ j < i+ 65535 do
x← four bytes of F1 at offset j
T [H(x)]← j
j ← j + 1

repeat
N ← N + 1
x← four bytes of F2 at offset i
k ← T [H(x)]
if k is null then
x← four bytes of F1 at offset j
T [H(x)]← j
j ← j + 1
i← i+ 1

else
while F1[k] = F2[i] do
x← four bytes of F1 at offset j
T [H(x)]← j
j ← j + 1
i← i+ 1
k ← k + 1

until i = s2
return N

To calculate the distance between samples F1 and F2 we use algorithm delta 1 which

FP7-ICT-216026-WOMBAT 15



2 Static Clustering

is inspired by xdelta [22]. This algorithm computes the number of instructions necessary
to convert one file into the other. In the algorithm the expression Fx[n] references the
byte of Fx at offset n, H(x) is a hash function, T is a hash table, and N is the number
of instructions. The distance follows the expression:

d(F1, F2) =
|s1 − s2|+ 2N

s1 + s2
(2.1)

Here s1 and s2 are the sizes of the samples F1 and F2 being compared. It must be
said that this distance is not symmetrical (i.e. d(F1, F2) 6= d(F2, F1)), although it tends
towards symmetry when the samples are closer in size. For samples with very dissimilar
sizes, but which are still similar in some way (consider, for example, the case of comparing
a sample with a truncated version of itself), this asymmetry could lead to very different
results depending on the order of comparison. To avoid this discrepancy, we decided
that the biggest sample would always be the reference file F1, and the smallest one the
target file F2. This is because the delta algorithm generates fewer instructions when
trying to convert a large file into a smaller one than the opposite way.

2.2.2 Clustering Samples

In order to group the similar samples together a single-linkage clustering algorithm
[15, 16] was employed. This algorithm receives a matrix with the distances between
the samples of our dataset, and creates a dendrogram showing the similarity relation
between them.

When applying the algorithm to a subset of 3950 samples taken from the set of 7521
analyzed in the previous section, 39 clusters were generated containing 738 samples as
shown in Table 2.3. As can be seen, the biggest cluster accounts for more than 10%
of the samples analyzed, indicating the presence of a big group of samples of the same
family within the set.

2.2.3 Limitations

The big disadvantage of this clustering algorithm is its performance. The number of
sample comparisons that must be done to fill the initial distance matrix for the clus-
tering algorithm is N(N−1)

2 . As the number of samples grows linearly, the number of
comparisons grows quadratically. The sample comparison algorithm is not very costly
in itself, it only depends linearly on the size of the files being compared, but it requires
the content of both files to be read completely, incurring a large number of I/O disk
operations. With modern hardware, applying this algorithm to up to 5000 samples is

16 SEVENTH FRAMEWORK PROGRAMME



2.2 Content-based Static Malware Clustering

Cluster # samples

1 423
2 107
3 48
4 18
5 11
6 11
7 9
8 8
9 8
10 6
11 6
12 6
13 6
14 6
15 6
16 5
17 4
18 4
19 4
20 3
21 3
22 2
23 2
24 2
25 2
26 2
27 2
28 2
29 2
30 2
31 2
32 2
33 2
34 2
35 2
36 2
37 2
38 2
39 2

Table 2.3: Clusters generated by content-based static clustering

FP7-ICT-216026-WOMBAT 17



2 Static Clustering

still affordable, but above this number the time required to complete the process make
it unpractical.

18 SEVENTH FRAMEWORK PROGRAMME



3 Deriving the Structure of Shellcode

The Argos emulator [30] is used by various projects to detect zero-day attacks. In
Deliverable D11, we motivated an extension of Argos to keep executing shellcode after
an attack is detected with an eye on analysing the shellcode. In this chapter we discuss
the implementation.

Our aim is to determine the structure of the shellcode. It is arguably impossible to
find this structure (or the malware’s behaviour for that matter) without executing part
of the shellcode. A simple analysis of the instructions in memory reveals very little as the
shellcode is typically obfuscated by means of several layers of packing (see Figure 3.1 for
a common shellcode structure, and Figure 3.2 for several of these layers in a real exploit).
Static analysis may help, but runs into difficulties in the presence of indirect jumps in
the code, where the target of a branch cannot be determined statically. Without running
the unpacking routines, the bytes in memory are mostly meaningless.

Recall that Argos maintains a separate shadow memory that is not accessible to the
guest operating system or its applications. Argos uses this memory to store taint tags.
Briefly, it tags all data from a suspect source as tainted. Whenever such data is copied,
or used in a calculation, the destination address or register is also tainted. An alert
is raised whenever the processor is about to execute tainted instructions or jump to a
tainted address.

jump

GetPC unpacker input

read

write

unpacker code code
output

Figure 3.1: Common shellcode: a GetPC routine obtains the current program counter,
which is then used by an unpacker that decodes the real shellcode in memory

19



3 Deriving the Structure of Shellcode

3.1 Shellcode Analysis

Unpackers work by reading bytes in memory, applying a decoding function and writing
the results back to memory. Typically, both the source and the target of the decoding
function are in tainted memory areas, although we do not preclude the use of clean
bytes. For example, a very simple unpacker is one which simply XORs a range of bytes
with a constant. An example is shown in green in Figure 3.2.

After unpacking, the shellcode jumps to this memory area and starts executing the
bytes that it previously unpacked here as executable instructions (the jmp instruction at
address 0x52f830). These instructions may not represent the final shellcode, as attacks
often use various layers of packing and unpacking. The final shellcode only reveals itself
by doing something useful for the attacker, such as downloading the malware binary and
executing it. Doing so from a user space application requires system calls.

In Deliverable D11, we proposed that by continuing the execution of the shellcode and
by monitoring jumps to bytes that were written by the shellcode itself, we can find the
structure of the shellcode, that is, the different layers of unpacking that it employs and
the final ‘real’ shellcode. In a nutshell, we obtain the entry points of each consecutive
layer of execution by tracking the shellcode while it executes, including all the bytes that
it uses to unpack the shellcode, and then marking all jumps into the bytes that were
unpacked at layer n as a transition from to layer n+ 1.

In this deliverable, we describe how we implemented shellcode structure identification.
In addition, we briefly discuss some of the issues we had when implementing it. Finally,
we show an example of the resulting ouput of an analysis.

In brief, if an attack is detected, the new version of Argos logs the event and starts
shellcode tracking mode. Shellcode tracking mode differs from normal taint tracking
mode used by Argos. It is more expensive, but as attacks are rare, we do not consider
this to be a problem. In shellcode tracking mode, the actual shellcode instructions are
executed until the code reaches a stop condition. Typically, the stop condition will be a
call to a specific function of the Windows API.

None of this is trivial. It requires obtaining and scanning information structures in
Windows to see DLLs are loaded and what the names are of the functions that the
function calls. So every call to the Windows API should be monitored. However, we
do not want to monitor too much. For instance, we do not track the calls made by the
Windows functions internally.

Finally, we are interested not just in the final shellcode, but also in the bytes in the
network that correspond to the executed instructions. For this reason, we explicitly log
all bytes that are accessed by the shellcode. As mentioned earlier, bytes that are first
written by shellcode instructions and subsequently jumped to, indicate a layer transition:

20 SEVENTH FRAMEWORK PROGRAMME



3.1 Shellcode Analysis

Figure 3.2: Results of Argos’ shellcode analysis: the red instructions represent a nop
sled, the green code is an unpacker, and the blue instructions are (part of
the) real shell code

FP7-ICT-216026-WOMBAT 21



3 Deriving the Structure of Shellcode

either the next unpacker, or the real shellcode.
For all of the bytes read and written by shellcode instructions, we track the origins

in the network trace. For instance, suppose a byte at address A1 in memory originated
in the network trace at offset x. If the shellcode reads this byte, decodes it (e.g., by
applying an XOR) and writes it back at address A2, we still know that the byte at
A2 derives from offset x in the network trace. If the shellcode subsequently jumps to
this address, we know the starting point of the next level in memory, as well as the
corresponding network bytes.

The final shellcode is typically reached when the shelcode starts calling its first system
call. We now keep executing the shellcode in single step mode, or dump the shellcode
to file for later analysis, until we reach a stop condition.

3.2 The difficulty in executing shellcode

Contrary to expectation, executing shellcode in Argos proved to be very difficult. Log-
ging the bytes accessed by shellcode was straightforward and, indeed, for handcrafted
attacks we could apply our shellcode analysis fairly easily. However, when applying our
solution to real attacks, we noticed that most of them failed to execute and many of
them crashed the guest machine. Strangely, some of the exploit/shellcode combinations
worked.

After much debugging, we found that the problem is caused by the way in which
shellcode figures out the current execution address, i.e., the current value of the program
counter. Such code, commonly known as GetPC code is crucial for shellcode that wants
to refer to itself (e.g., when packing and unpacking). Several techniques are popular.
Perhaps the simplest way to implement GetPC code on x86 is by means of the call
instruction1

$+0: E8 00000000 CALL $+5 ; PUSH $+5 onto the stack

$+5: 59 POP ECX ; ECX = $+5

$+6: ...shellcode...

Assume the current value of the program counter is PC. In this case, the attacker calls
the instruction at PC+5 which is exactly the pop instruction. The call instruction will
push the return address on the stack, which in this case is also the address of the pop
instruction. The pop instruction stores the address in the ECX register and is done.

The disadvantage of the above method is that it contains null bytes, which are awkward
– for instance, they do not work well with vulnerable string copies. There are many ways

1
http://skypher.com/wiki/index.php/Hacking/Shellcode/GetPC
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3.2 The difficulty in executing shellcode

around this. As an example, attackers can make the target of the call an address that
is lower than the current address. In that case, the offset will be negative, removing the
zero bytes. This is also the method that is applied in the green bytes in Figure 3.2. The
first green instruction jumps ahead by 0x1b bytes and arrives at address 0x52f832, which
immediately performs a function call with a negative relative target address – landing
at 0x52f819. The result is that the address that was pushed on the stack (0x52f837) is
immediately popped into ESI and the getPC is done.

Still, many attackers prefer to abuse the way in which the x86 deals with floating point
instructions to achieve the same effect. The trick is based on a pecularity in the way
the x86 deals with floating point operations: the state of the floating point instruction
is always kept and can be explicitly recovered using the fstenv instruction. The state
includes the program counter.

$+0 D9EE FLDZ ; Floating point stores $+0 in its environment

$+2 D974 E4 F4 FSTENV SS:[ESP-0xC] ; Save environment at ESP-0xC; now [ESP] = $+0

$+6 59 POP ECX ; ECX = $+0

Argos was able to execute shellcode that used the first method of getting the program
counter, but not the second. Eventually, we found that the problem was not caused by
our code at all. Rather, the Qemu emulator on which we have based Argos, does not
always properly handle floating point operations. In certain situations, Qemu does not
save the program counter of the floating point instruction.

We fixed the problem by emulating the appropriate actions for all possible FPU in-
structions in Argos. Whenever an FPU instruction is executed, we explicitly save the
program counter in a state field specifically created for this purpose. Doing so is not
completely trivial as Qemu translates all x86 instructions in an intermediate code, so it
becomes harder to find the program counter of the original instruction. Eventually, we
were able to instrument every FPU instruction in Qemu with an explicit call that finds
the current program counter.

Figure 3.2 is the output of our new version of Argos in shellcode analysis mode. It
shows that the alert is a little friendlier than the existing Argos reports (which we
still generate) in the sense that we go beyond simply dumping tainted bytes in memory.
Instead, we disassemble the instructions and colour code various unpacking and execution
stages of the attackers’ code.
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In Deliverable D11 (D4.3) “Intermediate Analysis Report of Structural Features”, we
discussed the very early stages of our research on hybrid approaches to malware analysis,
based on combining static and dynamic analysis techniques.

Currently, dynamic analysis tools (such as Norman Sandbox, Anubis [1], and CWSand-
box [2]) are the most popular choice when performing automated malware analysis.
These tools run the binary under inspection in a controlled environment (a sandbox)
and monitor its runtime behavior, typically by recording the Windows API library and
the operating system calls, including arguments, that the program invokes. The ad-
vantage of dynamic analysis techniques is that the actions of a malware sample can be
observed directly, without complications due to runtime packing or code obfuscation.

Although useful in practice, dynamic techniques are not without limitations. The
most significant issue is that a dynamic analysis run is unlikely to reveal the entire
range of capabilities of a given binary. The reason is that the analysis can only observe
behaviors for which the corresponding code is actually executed. In contrast, many
malware programs include triggers that ensure that certain functions are invoked only
when particular environmental or temporal conditions are satisfied. Common examples
are bot programs that wait for external input from their command and control servers,
or malware programs that execute their malicious payload only before (or after) a certain
date.

Previous research [7, 26, 38] has recognized the problem that dynamic techniques suf-
fer from limited coverage. The proposed solutions mainly revolve around the idea of
increasing the number of paths that are dynamically explored. To this end, analysis sys-
tems execute a binary multiple times. For each run, such systems either provide different
inputs that invert the outcomes of certain conditional branches (possible triggers) [7, 26],
or simply force the execution along a different path [38]. In both cases, additional code
can be reached, potentially revealing previously-unseen behavior.

Unfortunately, systems that explore multiple execution paths have to deal with the
path explosion problem. Path explosion occurs because, for each interesting branch in
the program, the analysis has to follow two successor paths. This leads to an exponential
growth in the overall number of paths that need to be explored. Various heuristics are
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used to first select more promising continuations. However, these heuristics rarely achieve
full code coverage. Thus, even though multi-path analysis can increase the number of
behaviors that are observed during a dynamic analysis run, it is unlikely that the entire
code is executed. Moreover, multi-path analysis is costly, which is a significant limitation
when considering the tens of thousands of samples that need to be analyzed daily.

This research has since found a specific focus in the detection of dormant behavior
in malware samples, and has reached a successful conclusion. The results have been
presented at the 2010 IEEE Symposium on Security and Privacy, and are published in
the conference proceedings.

We proposed Reanimator, a novel approach to identify dormant behaviors (behaviors
that are not observed during dynamic analysis) in malware binaries. Our approach
exploits the fact that many malware samples share the same code base, or at least,
parts of their code. This is due to the fact that many samples are just re-packaged,
polymorphic variants of the same malware program. Moreover, as previous studies have
shown [20], copying and pasting is a common practice in software development, and,
certainly, malware programmers are no exception.

The basic approach of Reanimator is the following: for every malware sample that
is examined by a dynamic malware analysis system, we check its runtime actions for the
presence of certain interesting, high-level behaviors. These behaviors are expressed in the
context of system calls and Windows API functions, and they represent actions such as
packet sniffing, or terminating anti-virus processes. For each behavior that is observed,
we automatically locate the code of the binary that is responsible for this behavior. It is
important that the located code is accurate; that is, the identified code should be directly
responsible for the observed behavior, and not contain unrelated helper functions, such
as library routines. Based on the identified code regions, we create a model that captures
structural information of this code. Using these models, we can then check other binaries
for the presence of similar code. This is done by statically examining the unpacked body
of a malware binary. When a model matches, we assume that the malware program
contains functionality that implements the corresponding behavior.

The main contributions of the published paper are the following:

� We introduced a novel technique to automatically identify and model code regions
in binaries that are directly responsible for specific runtime behaviors.

� We presented a system that leverages models to statically check unknown programs
for the presence of previously-seen, malicious functionality.

� Our experimental evaluation demonstrated that our system successfully finds dor-
mant behaviors in malware samples that are not discovered by a dynamic malware
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analysis tool.

In the following, we report the main results of the paper.

4.1 System Goals and Approach

The goal of Reanimator is to improve the quality of the results delivered by automated
malware analysis systems. In particular, we address a key limitation of dynamic malware
analysis platforms, which can only examine code paths that are actually executed. To
do this, we statically search a malware binary for code that was not run during dynamic
analysis but that implements specific functionality that is of interest to a malware an-
alyst. Clearly, the concept of statically searching a program for code fragments that
indicate malicious behaviors is not novel per se. However, our approach offers a com-
bination of two salient properties that improve significantly over previous work. More
precisely, our techniques enable us to automatically generate functionality-aware models
of binary code.

Automated model generation. The ability to automatically extract models is im-
portant, because it removes the need for tedious and time consuming manual analysis,
and scales to the large volume of malware samples that are discovered on a daily basis.
Previous work on automated signature (or, more generally, model) generation resulted
in a number of systems that extract byte strings [18], token sequences [28], or control
flow graphs [19] to identify malware binaries. Fundamentally, all these systems share
the same underlying mechanism: They search for bytes, instructions, or subgraphs that
frequently appear in a set of malicious programs (or execution traces) while, at the same
time, they do not appear in legitimate programs (or traces). This basic approach is
often successful in automatically extracting models that are able to (statically) classify
an unknown program as malicious or benign. However, such models carry little addi-
tional semantic information. In particular, it is typically unclear whether a generated
model captures some core malware behavior or simply represents a program artifact or
auxiliary functionality. This is a serious limitation when such models are deployed in
an automated malware analysis system. The reason is that it is often clear that a pro-
gram under examination is malicious (e.g., because it was collected by a honeypot as
the payload of an exploit), but it is not clear which set of functionalities this program
implements.

Functionality-aware models. To identify specific malware behaviors, one requires
models that are functionality-aware. That is, these models need to be equipped with
semantic information that indicates the presence of specific, malicious functionality (e.g.,
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the fact that a malware sends spam, monitors keystrokes, or starts a web server to pro-
vide backdoor access to a compromised host). So far, efforts to build functionality-aware
models relied on human analysts. For instance, previous work has proposed semantics-
aware code templates [11] and malware blueprints [9]. Such models can precisely char-
acterize code snippets that implement suspicious functionality, such as unpacking or
sending spam mails. However, while code templates and malware blueprints are robust
to minor code changes and obfuscation, they are nonetheless specific to one concrete way
in which a high-level behavior is implemented. We call a piece of code that implements
a malicious behavior in one specific way an instantiation of this behavior. Of course, it
is common that members of a certain malware family share the same instantiation of a
particular behavior. Moreover, code sharing makes it likely that the same instantiation
can be found across several different malware families. However, it is necessary to man-
ually develop a different code template or blueprint for each new behavior instantiation
that is identified. Clearly, this is undesirable, given the massive volume of novel malware
that is encountered in the wild.

The ability of Reanimator to generate functionality-aware models enables us to
statically explore malware binaries for instantiations of specific behaviors. This allows
us to accurately recognize malicious program capabilities, even when the corresponding
code was not executed, addressing an important limitation of dynamic analysis systems.
The ability to extract models automatically allows us to cope with the large number of
malware samples that need to be analyzed. In addition, it is faster for our system to
automatically generate a model for a newly-identified instantiation of a behavior than
for a malware author to manually modify the code to create this instantiation. This is
an important advantage in the arms race between defenders and malware authors.

Rationale of approach. As mentioned previously, the goal of our system is to recognize
the purpose of code that is not executed during dynamic analysis (dormant functional-
ity). To this end, we exploit the fact that a dynamic malware analysis platform receives,
executes, and observes thousands of malware programs every day. The basic insight is
that, when analyzing a malware sample, we can take advantage of the wealth of infor-
mation obtained from previous analysis runs. More precisely, we can statically search
a program for the presence of a code fragment that is sufficiently similar to code that
(i) was executed during a previous, unrelated analysis run and (ii) was found to be an
instantiation of a certain malware behavior. In this case, we know that the program
under examination contains functionality that can produce this observed behavior.

It is important to note that the behaviors that can be observed in a dynamic analysis
environment vary significantly, even for instances of the same malware family. For
example, depending on the availability of the command and control (C&C) server or the
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Figure 4.1: An overview of the Reanimator workflow.

currently-advertised command, a bot will invoke different payload routines (e.g., the bot
might scan, start a proxy server, send spam, or do nothing). Thus, frequently, a single
dynamic analysis run only reveals a small portion of the entire set of behaviors that a
malware program could exhibit. With Reanimator, we can automatically generate a
model that captures the code that is responsible for the observed behavior. As a result,
each execution of a binary contributes a piece to a global knowledge base that stores
different instantiations for different behaviors. This knowledge base can then be used to
discover dormant functionality in other malware samples.

4.2 System Overview

Reanimator works in three phases, as shown in Figure 4.1. The first two phases are
responsible for generating functionality-aware models for different behaviors. The last
phase uses previously constructed models to check for dormant behaviors. The following
paragraphs outline the three phases in more detail.
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4.2.1 Dynamic Behavior Identification

In the first phase, a malware binary is executed in an instrumented, dynamic analysis
environment. For this, we obtained access to Anubis [1], a sandbox that is built on
top of the whole-system emulator Qemu. Anubis records the invocations of a large set
of security-relevant system calls and Windows API functions. In addition, the system
uses taint analysis to track data flow dependencies between system and function call
arguments.

Based on the output of Anubis, we use a set of specifications to identify different types
of interesting, security-relevant behaviors that a malware binary has exhibited during
the dynamic analysis. We call such externally-visible, security-relevant behaviors that
are observed during dynamic analysis malware phenotypes. Examples of phenotypes
include sending spam, launching attacks, installing a keyboard logger, and performing
password sniffing. To write behavioral specifications for different phenotypes, we build
upon previous work that has introduced languages to express specific malware behavior
with the help of graphs [10] or automata [14, 24]. Both approaches use as input a trace
of system calls observed during dynamic analysis, information that is readily available
in the Anubis output.

For our work, we use rules that describe a malware phenotype in terms of the required
system or API calls, their arguments, and the data flows between these arguments. This
is very similar to malspecs [10]. For instance, we detect that a malware program is
sending spam by looking for outgoing mail traffic on TCP port 25. Such activity is, by
assumption, malicious because Anubis does not support user interaction, and it is very
unlikely that a benign program needs to send email without user approval. Similarly,
we can detect a network-based attack by matching the data that is provided to the
network send API call against network intrusion detection signatures. Port scan or
denial of service attacks are captured by measuring the frequency of (failed) outgoing
connection attempts. Detection of other behaviors requires us to take advantage of
data flow information. As an example, a malware “dropper” (or update) behavior is
characterized as a data flow from a network socket to a file together with the fact that
this file is later executed. In total, we have manually developed nine specifications of
high-level behaviors that cover common malware activity. These behaviors are discussed
in more detail in Section 4.4. Of course, if needed, the set of patterns can be easily
extended to cover additional phenotypes.

The astute reader might wonder why we consider it reasonable to manually write
specifications for dynamic behaviors (phenotypes) when we have previously stated that
automation is necessary for generating functionality-aware models. The reason is that
specifications that operate on dynamic analysis output can capture behavior at a high
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level of abstraction. Hence, they are much easier to develop than models that operate
on static binary code. This is because with dynamic analysis, one has concrete outputs
or events that a specification can be applied to. For example, it is relatively straightfor-
ward to identify spam activity by checking for network traffic to port 25 that contains
SMTP keywords. On the other hand, it is significantly more difficult to model binary
code that is capable of opening a network connection to port 25 and sending out data
that conforms to the SMTP specification. Moreover, the same dynamic output can be
achieved in many different ways. That is, a single phenotype can be implemented by
many different code instantiations, each of which might need to be modeled explicitly.
Of course, specifications that operate on dynamic output cannot, on their own, achieve
Reanimator’s main goal, which is precisely to identify those (dormant) behaviors that
are not executed during dynamic analysis.

Whenever we identify a phenotype B during dynamic analysis, we mark all system
calls that are directly related to B. For example, assume that we recognize that a
malware sample opens a network connection and sends out a spam mail (by checking
that this connection contains SMTP traffic and has destination port 25). In this case,
we mark the system call that is responsible for opening the socket (that belongs to the
network connection over which the mail was sent), as well as all system calls that write
out the mail (spam) data. Similarly, for network sniffing, we would mark the system
call that is responsible for opening a promiscuous-mode socket, and all system calls that
receive data from this socket. We define the system calls that are marked as related to
behavior B the relevant system calls for B, and we denote this set as RB. The set of all
relevant system calls R = {RB},∀B observed during the dynamic analysis run, serve as
the starting point for the next phase.

4.2.2 Extracting Genotype Models

In the second phase, the goal is to locate the part of the binary that is directly respon-
sible for a certain phenotype that was witnessed during the previous dynamic analysis
phase. We call the code that is responsible for a particular phenotype a genotype for
this behavior. Once we have located a genotype, we can build a model for it. The basic
idea is that a genotype model can then be leveraged to search for similar code in other
binaries.

A main challenge, and a core contribution of this paper, is to develop techniques to
find and model genotypes that correspond to behaviors that are seen during a dynamic
analysis run. It is important that these genotype models are precise, i.e., that they
capture only code that is directly responsible for malicious behavior. In particular, a
model should not contain parts of shared utility or library routines that are also used
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by other functionality. Moreover, genotype models should be complete, i.e., they should
contain the entire code that is responsible for a particular behavior and not only a
fragment. Imprecise or incomplete models can lead to both false negatives or false
positives. For example, when a model contains unrelated code, it is possible that this
fragment accidentally matches benign code (false positive).

As mentioned previously, the starting point for generating a genotype model is the set
of relevant system calls RB that the previous phase associates with a certain malicious
behavior B. We first use a program slicing step to identify all instructions that contribute
to the input parameters of these system calls, as well as instructions that operate on
their output parameters. Typically, the resulting program slices are neither precise nor
complete. Thus, we use a subsequent filtering step to remove those parts that are not
directly related to the observed behavior. Finally, we use a germination step to extend
the slice to include parts of relevant code that were missed by the initial program slicing
step. Typically, these parts are related to instructions that do not directly operate on
system call input or output data, but that set up a loop or maintain the program stack.
Moreover, the germination step can also include alternative code paths that are part
of the dormant functionality but were not executed during the dynamic analysis run.
This typically increases the completeness of our genotype model by including code that
handles special cases or error conditions that did not occur during the dynamic analysis.

Note that a genotype represents only one instantiation of a particular phenotype.
That is, a malware binary might possess a dormant functionality, but our genotype
models do not recognize this functionality because the malware binary implements this
functionality in a different way (i.e., it has a different genotype for the same phenotype).
However, as our empirical results demonstrate, polymorphic variants and code reuse
are common and lead to a situation where malware binaries share a significant amount
of code. Moreover, whenever a new implementation of a behavior is observed in our
sandbox, the system can automatically generate a corresponding genotype model.

4.2.3 Finding dormant functionality

Once we have generated a set of genotype models associated with different malicious
behaviors, the third and last step is to use such models to check binaries for dormant
functionality. To this end, we statically disassemble an unpacked sample and check
for the presence of previously-modeled genotypes. When a code region is found that
matches one of our models, we report that this sample contains a dormant functionality
that implements the behavior associated with the matching genotype.

Since we use static analysis to identify dormant code in binaries, we need to take
into account runtime packing and code obfuscation. To handle packed binaries, we use
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a generic unpacking technique similar to previous solutions such as Renovo [17] and
OmniUnpack[23]. In general, we envision to use Reanimator in combination with a
dynamic analysis tool such as Anubis. Thus, it is easy and effective to take a memory
snapshot at the end of the dynamic analysis run. Then, we can perform the search for
dormant functionality on this unpacked snapshot. The robustness of the system against
code obfuscation depends on the concrete implementation choice for the genotype mod-
els. As shown in Section 4.4, our current models, which rely on structural information
of the binary code, work well and can tolerate differences in the program source code,
as well as changes that are the result of different compiler settings or compiler versions.
When more robustness is required, one could fall back to semantics-aware code templates
or blueprints, although such models incur significantly higher performance costs.

4.3 System Details

In this section, we discuss in more detail our approach to generate genotype models for
phenotypes that are identified during dynamic analysis. Then, we discuss how these
models can be used to detect dormant functionality.

4.3.1 Genotype Models

As mentioned previously, a genotype is a part of a malware program that is responsible
for a particular runtime behavior. Thus, genotype models need to be able to characterize
binary code. This can be achieved in different ways. On one end of the spectrum, a
model could be implemented as a string of bytes or a sequence of instructions that covers
an interesting code section. While such models are fast when searching for dormant
functionality, they are very specific. Thus, even minor changes in the malware binary
would cause these models to miss relevant code. On the other hand, one could attempt
to extract generalized code templates (such as the ones proposed in [9, 11]). While quite
robust to semantics-preserving code changes, the detection process using these models
is very costly.

For this work, we leverage the techniques proposed in [19] and model code as its
corresponding colored control flow graph (CFG). A CFG is a directed graph where nodes
are basic blocks, and an edge from node u to v represents a possible control flow (such as
a jump or branch) from u to v. The nodes of the CFG we use are colored based on the
classes of instructions that are present in the corresponding basic blocks. Instruction
classes, as defined in [19], are, for example, “arithmetic,” “logic,” or “data transfer”
operations.
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CFGs have been used in the past to find similarities between polymorphic worms and
malware samples. Also, they have a number of properties that make them particularly
useful in our setting. First, focusing on the structure of code instead of instruction
sequences makes models robust to simple code insertion and deletion, and to certain
classes of code modifications such as register renaming or instruction substitution. Sec-
ond, using proper optimizations [19], it is fast to search malware programs for code that
matches previously-constructed models.

In general, two genotypes are considered similar when their respective CFGs share at
least one isomorphic subgraph that is sufficiently large (it has at least k nodes – as in [19],
we use k = 10). Thus, given a genotype, modeled as a colored CFG G, the problem of
finding this genotype in a malware binary is reduced to finding an isomorphic subgraph
of size k that is present both in G and in the binary under analysis. Since this is an
NP-complete decision problem, previous work [19] introduced an efficient, approximate
algorithm. This algorithm generates a subset of all possible k-node subgraphs of G and
normalizes them. Each normalized k-node subgraph then serves as a succinct fingerprint
of the code region that is modeled. For performance reasons, a hash of the subgraph’s
normalized representation is typically used. In other words, a genotype model is not
the colored CFG itself, but a set of fingerprints that represent it. To search a binary
for the presence of a particular genotype, only the fingerprints are used. When one or
more fingerprints match, then we assume that the binary contains the corresponding
genotype.

4.3.2 Genotype Model Extraction

The goal of the genotype model extraction phase is to map an observed, dynamic be-
havior (a phenotype) to the code that implements this behavior (the genotype). Once
this code is located, we can extract its CFG and generate the corresponding fingerprints.
These fingerprints then serve as the genotype model for detecting dormant behaviors in
other binaries. The genotype model extraction process operates in three steps, which
are discussed in the following.

Program Slicing

The starting point for locating code that is responsible for a particular behavior B is
the set of relevant system calls RB that the dynamic behavior identification phase has
found to be associated with B (as discussed in Section 4.2.1).

In a first step, we attempt to find all code that is “related” to the systems calls r ∈ RB.
More precisely, we attempt to find all instructions that either (i) compute values that are
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used as input parameters to these system calls, or that (ii) process the output (return)
values from these system calls. The intuition is that when a relevant system call r is part
of an observed behavior, then the code responsible for this behavior must either prepare
and invoke this system call to produce desired output or use it to obtain necessary inputs
that are later processed.

Interestingly, the concept of a set of instructions that are related to a program point
is similar to a program slice [5]. In general, a program slice consists of all program
instructions that affect a given point of interest in the program. In our case, we are in-
terested in all instructions that affect a point of interest through data flow dependencies.
That is, our slices only capture data flow between instructions, but we do not include
instructions that have an indirect effect through control flow. The point of interest is
a system call r ∈ RB. Thus, a backward slice consists of all instructions such that, for
each instruction, there is a data flow from one (or more) of its operands to one of the
input arguments of an interesting system call (case i). A forward slice, on the other
hand, is defined as all instructions for which there is a data flow from the output of an
interesting system call to the instruction (case ii).

Forward slicing. For certain types of malicious behavior, the malware program needs
to process the output of system calls. For example, a malware that implements packet
sniffing functionality has to process data that is received via a promiscuous-mode socket,
either to log it or to analyze it for specific patterns that are of interest to the attacker
(e.g., passwords or credit card numbers). As another example, a program that imple-
ments a backdoor has to process the output of the network-related system calls that are
used to receive commands from the attacker. To capture the code (genotype) related
to such classes of behavior B, we extract a forward slice φ, starting from the output
parameters of the relevant system calls RB.

To compute a forward slice starting from the output of a given system call, we lever-
age the taint information that is provided by Anubis. In addition, we make use of the
instruction log that records each operation that the malware under analysis has per-
formed. More specifically, we taint the output of the system call and then include into
the slice φ all instructions that operate on tainted data (i.e., at least one source operand
of an instruction is tainted). Furthermore, we also propagate taint across system calls.
That is, we taint the output of system calls when at least one argument of the system
call was tainted.

When computing a forward slice, the analysis follows a dynamic approach and di-
rectly operates on the instructions that were executed by the malware binary. Because
malicious code may be self-modifying, individual instructions cannot simply be iden-
tified by their address in the program. Instead, we identify an instruction as a tuple
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〈address, version number〉. While the program under analysis is executing, we incre-
ment the version number of an instruction whenever the memory at the corresponding
address was modified since the last time it was executed.

Backward slicing. While some malware functionality operates on the output of system
calls, other behaviors are based on computation that provides inputs to relevant system
calls r ∈ RB. For instance, in the case of a UDP flooding attack, we are interested
in how the packet payload and network-related parameters (e.g., ports or destination
IP addresses) are determined. Or, in case of spam activity, the interesting part of the
program is the genotype that is responsible for setting up a network connection and
sending out mails.

To identify the code that is responsible for computing the inputs to relevant system
calls, we use a standard dynamic slicing approach [5]. That is, we leverage the instruction
and memory access logs that Anubis produces to follow define-use chains backwards,
starting from the input parameters of the system calls. More precisely, we start to look
for instructions that define the values that serve as input to relevant systems calls, and
we add these instructions to the slice φ. For each of these instructions, we examine
their operands and determine the values that they use. For each such value, we locate
the instruction that defines it, and include it into the slice as well. This process is
then continued recursively, adding to φ all instructions that define (produce) inputs for
instructions already in the slice.

For each system call r ∈ RB, we compute forward and backwards slices φr,forward and
φr,backwards. The output of the program slicing step is the slice φ that is the union of all
forward and backwards slices:

φ =
⋃
r∈RB

(φr,forward ∪ φr,backwards).

Running example. As a running example to illustrate the way in which genotype
model generation works, consider the code snippet shown in Program 1. This code
snippet shows a part of the main control loop of a bot. In particular, we focus on
one case statement that is executed when the bot receives a “sniff” command. If the
botmaster sends such a command, the program first opens a socket in promiscuous mode
(Lines 5-9). Then, for each packet, the code checks whether a TCP packet was received
(Lines 11 and 12). If so, the bot scans the packet payload for passwords (indicated by
the presence of the string password) and logs those that are found (Lines 13-16).

When the code in the example is executed during dynamic analysis, our system would
recognize that the WSAIoctl call is being used to put a socket in promiscuous mode. This
behavior is associated with “sniffing activity,” and the dynamic behavior identification
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Program 1 Example: Network sniffing

1 switch(command){
2 case X:
3 . . .
4 case sni f f :� �
5 sock = socket( . . . ) ;
6 i f (sock == INVALIDSOCKET)
7 error () ;
8 bind(sock , . . . ) ;
9 WSAIoctl(sock , OPTPROMISCUOUS, . . . ) ;

10 while(recv(sock , buffer , . . ) ){
11 ip = (IPHEADER *)buffer ;
12 i f (ip−>proto ==TCP){
13 packet = buffer+sizeof(TCPHEADER);
14 i f ( strstr (packet , ”password”) != NULL){
15 write(log , ”Got a password!”) ;
16 write(log , packet ) ;
17 }
18 }
19 }� �
20 }
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step would mark the WSAIoctl call in Line 9 as relevant, together with all other calls
operating on the promiscuous socket sock; the socket, bind, and recv calls in Lines 5, 8
and 10. The corresponding genotype that we aim to identify and model is the entire case
statement (the code enclosed in the box), but not the helper functions such as strstr.

For packet sniffing activity, the genotype extraction phase first computes a forward and
backward slice for all relevant system calls. This includes into the slice Lines 5, 6, 8, 9
and 10 because they operate on the variable sock, which is the result of the socket
system call. Moreover, the system includes the code in Lines 12, 14, and 16, because
they operate on the tainted data buffer returned by the call to recv. Note that Lines 11
and 13 are not (yet) included, because they only manipulate variables that point to
tainted data, but are not themselves tainted. Furthermore, Line 1 is not included in the
backwards slice, because our slicing approach takes into account only data flow, and not
the effect of control flow decisions.

Filtering

As discussed in the previous section, the program slice φ contains all instructions that
are connected to relevant system calls by a data flow. However, it is likely that φ contains
code that is not directly related to the malicious behavior that was observed. This occurs
for two main reasons.

First, when generating a forward slice from instructions that operate on system call
outputs (tainted data), it is often the case that instructions are included that are part of
general purpose utility functions (e.g., string processing routines). This is particularly
critical for library functions that are statically compiled into a binary, because models
for such functions will match against any code that makes use of the same library.

A second reason why slices often contain code that is not directly related to the
observed malware behavior is the fact that backward slices might lead back “too far” in
the program. That is, it is not immediately clear when the analysis should stop to follow
define-use chains. As a result, slices frequently contain initialization code. Even more
problematic, when the malware program is unpacked during runtime, the slice might
even include the generic code of the packer. Including such code into the genotype is
undesirable because the corresponding model potentially matches all binaries that use
the same unpacking routine (which is clearly not related to a certain runtime behavior).

To address the problem of unrelated code that is part of the program slices computed
during the first step, we introduce an additional filtering step. The goal of this filtering
step is to identify instructions that are not directly responsible for a malicious behavior.
To this end, we have developed the following two techniques:
White-listing. The first technique uses white-listing to remove instructions from the
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slice φ that are not related to behavior B. White-listing requires a set of white-listed
genotype models Ω = {ω}. Each white-listed genotype model ω characterizes code that
is not directly related to a certain behavior B. For each ω, we perform model matching
against the program under analysis. The result of model matching is a set of instructions
Nω ⊆ N of the malware program that successfully matched against ω. We then remove
all instructions from φ that appear in Nω.

To obtain a white-list for a malware program, we can make use of the program itself.
More precisely, given a number of threads, processes, or distinct executions of a program
under analysis, we can include into a white-list for B the genotype model of all the code
that is executed by threads or processes that did not perform behavior B. That is,
whenever a thread or process is run and does not exhibit behavior B, we can include
into the white-list for B all code that was executed during this run.

It would also be possible to use “foreign” genotypes for white-listing purposes (where
a foreign genotype is derived from programs other than the malware under analysis). For
instance, we could assemble a collection of genotype models of standard library functions,
or packing routines, and use it to ensure that no such code is included in genotype models
of a malware sample. We did not use a foreign white-list in our experiments. However,
the results in Section 4.4 show that Reanimator nonetheless achieved a high level of
accuracy.

Finding exclusive instructions. The second technique relies on identifying instruc-
tions that do not always operate on tainted data. That is, we identify the set of instruc-
tions θ ⊆ φ such that all instructions in θ operate on tainted data (output from marked
system calls) every time they are executed. We call these instructions exclusive to the
malware behavior.

The rationale behind exclusive instructions is that code that is directly responsible
for a particular behavior is expected to always operate on data that is related to this
behavior. General purpose functions, on the other hand, might also be invoked in other
contexts. In those contexts, these functions will operate on untainted data, and hence,
they will not be included in θ. For example, in the case of packet sniffing, the general-
purpose string routines are very likely to be used also by code that is unrelated to
manipulating the sniffed packet payloads.

At this point, we could remove all instructions from a slice φ that are not an element
of θ. However, in certain cases, this limits the possibility of the subsequent germination
step to discover additional, relevant instructions. Thus, we perform the subsequent
germination step on instructions in φ, and use θ only at the end for final post-processing.

Running example. In the example shown in Program 1, the initial slice would not
only contain the instructions that are part of the case statement, but also the code of
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utility functions that are called with tainted data (such as strstr in Line 14). Assuming
that we have properly white-listed this library routine, the corresponding instructions
would be directly removed from the slice. If this code was not white-listed, it would be
removed later. The reason is that it likely does not contain exclusive instructions. In
contrast, all instructions in the slice that are part of the case statement are exclusive
(i.e., they are in θ), since they always operate on tainted data.

Germination

A filtered slice φ contains instructions that are directly related to an observed, malicious
behavior. However, a slice might be incomplete. In particular, a slice might fail to
include instructions that are part of a behavior, simply because these instructions do
not directly operate on tainted data or because they are not part of define-use chains.
Such instructions typically perform auxiliary tasks, for example, saving register values
to the stack before a function call, updating a loop counter variable, or performing
pointer arithmetic. Others affect the data flow only indirectly, by influencing control
flow decisions.

The goal of the germination step is to improve the completeness of a genotype by
expanding a slice φ to include auxiliary instructions that are also part of the code
directly responsible for a behavior. At the same time, we do not want to reduce the
precision of a model by including unrelated code.

The basic approach to do this is the following: We consider an instruction as part of
the code that implements a behavior when this instruction cannot be executed without
executing at least one instruction that is part of φ. The intuition behind this approach
is that all instructions in a slice are known to be directly related to a certain behav-
ior. Thus, operations that will only be executed together with these directly-related
instructions should also be considered to be part of this behavior.
Algorithm. More formally, we consider a filtered slice φ to be the initial genotype for
the corresponding phenotype. In a first step, we add all instructions d to the genotype
that are dominated by the slice φ. This is a variation of the well-known concept of
dominance in graphs. In the traditional case, a node d is dominated by another node n
when every path from the start node to d must go through n. In our case, we consider
an instruction to be dominated by the slice φ when every path from the start node
(function entry point in the CFG) to d goes through at least one instruction n ∈ φ (but
not necessarily the same n for all paths). In a second step, we add all instructions p
to the genotype that are post-dominated by the slice φ. Again, this is an extension
of the traditional concept of post-dominance. In our case, we say that instruction p is
post-dominated by slice φ when all paths to the exit nodes of the graph, starting at p,
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go through at least one n ∈ φ. As desired, both dominated instructions d and post-
dominated instructions p cannot be executed unless at least one instruction n ∈ φ is also
executed.

To compute dominator and post-dominator relationships, the CFG of the program is
needed, and it can be built in one of two ways. First, we can build a dynamic CFG from
the execution trace, which holds all instructions that were executed during dynamic
analysis. This CFG is accurate, since it contains only instructions that were actually
executed by the binary under analysis. However, it might be incomplete, since it does
not cover program paths that were not executed. To include such paths as well, one can
build the static CFG by performing an additional, static analysis step that attempts to
disassemble the non-executed regions.

In addition to the CFG itself, one requires its start and exit nodes. Currently, we
run our analysis on the intra-procedural CFG. Thus, the start node of the graph is
the entry point to the function (a new function entry point is recorded whenever our
dynamic analysis observes a call instruction). The exit nodes of the graph correspond
to return instructions. This works well when operating on the static CFG. When using
a dynamic CFG, however, this approach often misses exit nodes. The reason is that
most exit nodes are never executed during the dynamic analysis run. Thus, when using
a dynamic CFG, we add pseudo exit nodes to all targets of conditional branches that
were not executed during dynamic analysis. We currently operate on intra-procedural
CFGs for performance and convenience reasons. When malware authors decide to attack
our technique, e.g., by splitting their program into a large number of extremely small
functions, or by merging all functions into one, our approach can be extended to work
on the entire program CFG.

Based on either the dynamic or the static CFGG = (N,E) (N is the set of instructions,
and E the control flow edges), the slice φ, a start node ε, and a set of exit nodes χ, we
then apply the algorithm germinate (Algorithm 2). The goal of this algorithm is to find
additional instructions that should be added to the genotype. To this end, the algorithm
first locates and marks all instructions nφ (instructions that are part of slice φ) in the
program’s CFG. Then, it uses graph reachability analysis to identify the instructions that
are dominated and post-dominated by the slice φ. These instructions are added to φ.
Since adding instructions to a slice φ might increase its dominance and post-dominance
in the graph, the algorithm runs in a loop until a fixpoint is reached (Lines 2, 3, and 10).

To find instructions that are dominated by the slice φ′, the algorithm first removes the
nodes that correspond to instructions in φ′ from the graph. More formally, the algorithm
generates an induced subgraph H from the CFG G by removing all nodes from G that
are in φ′ (Line 4). Note that a subgraph H is said to be induced if, for any pair of vertices
x and y of H, x→ y is an edge of H if and only if x→ y is an edge of G. When the set
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Algorithm 2 germinate()

Input: The CFG G = (N,E). The slice φ = {nφ}. The function entry point ε and exit
points χ.

Result: The extended slice ψ : {nφ} ⊆ {nψ} ⊆ N .
1: φ′ ← φ
2: repeat
3: n← |φ′|
4: H ← G[(N \ {nφ′})]
5: M ← mark reachable forward(H, ε)
6: φ′ ← φ′ ∪ (N \M)
7: H ← G[(N \ {nφ′})]
8: M ← mark reachable backwards(H,χ)
9: φ′ ← φ′ ∪ (N \M)

10: until |φ′| = n
11: ψ ← φ′

of nodes S in H is a subset of the nodes in G, then we can write H = G[S]. Then, on
the new graph H, starting from start node ε, the algorithm marks all nodes that are still
reachable from the start node, following the forward edges (Line 5). All instructions that
could not be reached (i.e., all instructions N \M in the graph that are not marked) must
have been “cut off” from the start node by the previously removed nodes. That is, there
is no path from the start node to an unmarked node that does not “pass through” the
slice φ. As a result, all instructions that correspond to these unmarked nodes are added
to the slice (Line 6). A similar approach is used for the post-dominance computation.
The only difference is that the mark algorithm starts at the exit nodes χ (Line 7) and
follows control flow edges in the opposite direction (backwards, in Line 8).

Model generation. Given the extended slice ψ, the next step is to translate it into a
corresponding genotype model. To this end, the system proceeds in two steps. First, it
splits the subgraph G[ψ], induced by ψ on the program CFG G, into maximal connected
subgraphs G1, .., GJ . It then splits the slice into the corresponding subsets ψ1, .., ψJ ,
where ψj is the set of instructions corresponding to nodes of Gj . Clearly, ψ =

⋃
ψj

In the second step, to filter possibly spurious instructions that might have been added
by the germination step, we make use of the set of exclusive instructions θ (as introduced
in the previous Section 4.3.2). More precisely, we discard all the slices ψj that contain
no instruction in θ. The final slice is then ψfinal = {ψj |ψj ∩ θ 6= ∅}.

The genotype model γ is defined as the induced subgraph γ = G[ψfinal].
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Running example. The germination phase adds a number of instructions (lines) to the
genotype that were not previously considered by the program slicing step. In particular,
it adds Lines 11, 13 and 15 (in Program 1), which are dominated by instructions in
the slice (for example, by Line 5). This step does not, however, add any instructions
outside of the case statement. The reason is that there are paths from the start of the
function (and the switch statement) to other case statements that do not traverse any
instructions in the slice associated with the sniff behavior.

Interestingly, when we use a dynamic CFG to perform the germination step, then
Line 7 would not be considered in the genotype. The reason is that the error condition
handled by Line 7 never occurred, so this instruction was never executed, and hence,
would not appear in the dynamic CFG at all. If, however, the system uses a static CFG,
then this line would be included.

4.3.3 Genotype Matching

The output of the previous step is a set of genotype models γB, one for each observed
phenotype B. Thus, the system knows, for each genotype model, what the corresponding
behavior is. This information can be leveraged to search for dormant functionality.

Initially, the genotype models must be prepared for efficient searching. To this end,
as mentioned in Section 4.3.1, each genotype model, which is a graph, is translated into
a set of corresponding fingerprints.

To perform genotype matching and, hence, to identify dormant functionality, an un-
known binary is first disassembled, and its CFG is extracted. Then, this CFG is searched
for the presence of fingerprints (as discussed in the context of polymorphic worms in a
previous paper [19]). Whenever a fingerprint matches, we have found the genotype that
this fingerprint belongs do. Thus, we know that the malware contains dormant func-
tionality that is capable of producing the runtime behavior that is associated with this
genotype.

Since we perform disassembly and control flow extraction of unknown malware sam-
ples, we need to overcome the problem of packed executables (according to [6], more
than 40% of the samples are packed with a known packer; a number which is likely
only a lower bound). To unpack samples, we use a very simple but effective technique.
In existing generic unpackers [32, 17], a malware under analysis is first executed in a
dynamic malware analysis environment. Since we already execute the analyzed code in
Anubis for several minutes, unpacking happens naturally. At the end of the analysis
run, we simply take a snapshot of the memory content and perform analysis directly on
this dump. This allows us to not only report the results from the dynamic analysis run,
but also to report all dormant functionality that was identified.
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Our experience showed that this simple unpacking approach worked very well for the
malware samples in our evaluation dataset, and it is also sufficient for most contemporary
malware that we have encountered. However, we are aware that there are advanced
packers that require the use of alternative unpacking techniques [35, 36].

4.4 Evaluation

The goal of the evaluation is to show that Reanimator can extract accurate and robust
genotype models for a variety of phenotypes. Moreover, we want to demonstrate that
these models are capable of efficiently identifying dormant functionality in real-world
malware.

4.4.1 Genotype Model Extraction

Phenotypes. To be able to extract genotype models, it is fist necessary to define
appropriate phenotypes. To this end, we first specified rules to detect nine phenotypes
that correspond to common malware behaviors. Although the following list is clearly not
exhaustive, we believe that it is sufficient to demonstrate the flexibility of our approach.

� spam: send unsolicited email. This behavior is detected as SMTP traffic at the network
level.

� scan: perform a port scan. To detect this phenotype, we rely on Anubis’ existing
network-level portscan detection heuristics.

� sniff: perform packet sniffing. This phenotype is detected when a program opens a
socket in promiscuous mode.

� keylog: log the keys that the user presses. This phenotype is detected when a program
invokes one of several Windows API calls that can be used to register callbacks that
receive keyboard information.

� rpcbind: exploit a Windows DCE/RPC vulnerability over the SMB/CIFS protocol.
This is detected at the network level, using appropriate intrusion detection (Snort) sig-
natures.

� killproc: kill a process (typically, an anti-virus process). This phenotype is detected
when an analyzed program uses a Windows API call to terminate a process that it did
not spawn itself.
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� backdoor: open a back-door. This phenotype is detected when the analyzed program
opens and listens on a TCP port.

� packetflood: simple denial-of-service. This phenotype is detected when the malware
sends more than a certain number of packets per second to a single destination.

� drop: “drop” and execute a binary. This behavior is detected when the taint analysis
observes a data flow from the network to a file, and this file is later executed.

Genotypes. Using the previously-defined phenotypes, we executed the following four
malware samples in our dynamic analysis environment:

� rbot: This malware sample is a representative of a classic IRC-based bot. The corre-
sponding source code was available to us. Therefore, we were able to force the bot to
connect to our own IRC server, and we instructed it to execute a variety of actions.

� pushdo: Pushdo is a sophisticated, modern downloader/dropper Trojan. It connects
to a hard-coded list of IP addresses over HTTP and attempts to download and install
additional components. We did not have access to Pushdo’s source code. Hence, we
started the program and allowed it to connect to its command and control infrastructure.

� cutwail: Cutwail is a template-based spam engine that is one of the typical payloads
of the Pushdo dropper. Initially, we did not have a sample of Cutwail, but we could use
Pushdo to download it and run it for us. For details on the Pushdo/Cutwail botnet, we
refer the interested reader to [12].

� allaple: Allaple [3] is a well-known polymorphic network worm. When started, our
variant performs a network scan on TCP ports 135, 139 and 445. Then, it attempts to
compromise the services identified by the scan.

We selected these four malware samples because they exhibit (or, in case of rbot, they
could be instructed to exhibit) a wide range of behaviors in the Anubis sandbox. Also,
these samples represent a good mix of a classic and two more advanced bots and a
well-known worm.

We then applied Reanimator to the executions of the four malware samples, and
automatically extracted ten genotype models. These models are shown in Table 4.1.
The table also shows the size of the genotype that was captured by the corresponding
model, both in terms of lines of code (when source code was available) and in terms of
basic blocks. Note that the number of basic blocks is shown both for the dynamic and
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Table 4.1: Lines of Code (where available) and number of basic blocks of genotype ex-
tracted in (S)tatic and (D)ynamic mode.

Genotype Sample Phenotype LoC
Basic Blocks
S D

sniff rbot sniff 95 59 31
udpflood rbot packetflood 60 51 41
keylog rbot keylog 84 59 49
killproc rbot killproc 65 42 27
httpd rbot backdoor 392 302 236
simplespam rbot spam 37 27 26
drop pushdo drop n/a 150 126
spam cutwail spam n/a 532 290
scan allaple scan n/a 99 62
rpcbind allaple rpcbind n/a 333 133

the static CFG extraction approach used during the germination step. As expected, the
static approach covers more code (i.e., regions that were not executed during dynamic
analysis). Also, it is interesting to observe that a single phenotype (in this case, spam)
can be implemented in different ways, which results in different genotype models.

4.4.2 Genotype Model Accuracy

In the next step, we wanted to analyze how accurate our extracted genotype models are.
To this end, we first examined whether Reanimator is successful in using a particular
genotype model to detect the corresponding genotype in other malware binaries. For
this analysis, we could make use of a dataset of 208 bot programs that were available
to us as source code. This dataset was provided by the authors of [29]. Many of the
208 bots are variants of rbot, and indeed, we randomly chose one rbot program from this
dataset as one of the four malware sample used for genotype model extraction.

Using the source code of this rbot sample, we manually extracted code snippets that
we considered to be responsible for each of the six observed rbot phenotypes (shown
in Table 4.1), one code snippet for each behavior. Then, we checked the source of the
remaining 207 bot programs for code that is similar to these six code snippets. Of course,
even with source code available, manually checking for the presence of similar code in
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Figure 4.2: Distribution of MOSS scores by percentage, along with the number of
matches generated by our genotype models.
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hundreds of programs is a tedious task. Therefore, we took advantage of MOSS [34],
a free, web-based service for plagiarism detection. MOSS is widely used for detecting
plagiarism in computer science classes, and it allowed us to identify those samples that
contain code that is similar to one of the manually extracted code snippets.

At this point, we used Reanimator to match the six genotype models generated for
the single rbot instance against the 207 remaining bot binaries. These binaries were
obtained by compiling each bot source code using Microsoft Visual Studio 2005. We
then compared the matches identified by Reanimator with the source code similarity
measurements obtained by MOSS. Of course, the hope is that the matches that are
independently produced by both techniques have a high overlap. That is, we expect that
Reanimator reports a certain (dormant) functionality in a malware binary whenever
MOSS reports that the corresponding program source contains the code snippet that
implements this functionality (or, at least, code that is similar to this snippet).

Figure 4.2 shows a comparison between the matches identified by Reanimator and
the similarity scores produced by MOSS. For each of the six behaviors j, and for each
of the 207 binaries i, MOSS produces a similarity score that indicates the confidence
that the code snippet that implements behavior j is present in binary i. We call this
similarity score Mi,j . Figure 4.2 shows a histogram that displays the distribution of the
scores Mi,j . It can be seen that many scores are very high, which confirms the previous
observation that the dataset contains many variants of rbot.

In addition to the similarity scores for MOSS, Figure 4.2 also contains the results for
Reanimator. In particular, whenever our technique finds a match for genotype model j
in binary i, we first check the similarity score that MOSS reported for this combination,
which is Mi,j . Then, we add 1 to the Reanimator results for the bin that corresponds
to this score. The intuition is that we expect that whenever our technique reports a
match, the corresponding similarity score is high. In other words, we would expect
that our system reports a match whenever MOSS’ similarity score is high (on the right
side of the graph), and nothing when the similarity score is low (on the left side of the
graph). The static and dynamic bars for Reanimator represent the results achieved
by using either a static or a dynamic CFG during the germination step (as discussed in
Section 4.3.2). For this dataset, the results are identical. However, as we show, this is
not the case on other datasets.

As one can see in Figure 4.2, Reanimator’s genotype matching results are closely
correlated with source code similarity obtained from MOSS. On the right hand side,
where the MOSS similarity scores are high, genotype matching is almost invariably
successful. On the left hand side, where MOSS produces a low score, there are almost
no Reanimator matches.

We then manually inspected those cases for which MOSS and Reanimator reported
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different results. First, we looked at instances where our technique detected a match,
but the similarity scores reported by MOSS were low (indicating different code). In
particular, we checked the code where MOSS reported low scores (lower than 50%).
We found that in all five cases, Reanimator was correct. That is, the sample did
indeed implement the functionality that Reanimator found. The low MOSS scores
were caused by the fact that large parts of the corresponding source code had been
modified, or re-implemented. However, enough of the genotype had been preserved that
Reanimator could recognize it. We also inspected the 27 opposite cases where MOSS
reported a high similarity, but Reanimator did not find a genotype model match. We
found that, in 13 cases, the implementation of the i-th phenotype was present in the
j-th bot’s source code, but not in its binary. The code was excluded from the build
process either at the compilation stage (because of #ifdef directives), or at the linking
stage, because the linker decided not to include an object that was not required. The
remaining 14 cases were false negatives, due to the fact that code was changed to an
extent that our models failed to detect the similarity.

Finally, we wanted to verify that the genotype models produced by Reanimator do
not match arbitrary binary code. That is, we wanted to understand the risk of false
positives produced by our models. To this end, we used our ten genotype models and
applied them to a dataset that consisted of 1,949 files found in the system32 directory
of a Windows XP installation. Of course, we do not expect any of our genotypes to
match on benign Windows program. Indeed, no matches were found.

4.4.3 Robustness

In this section, we evaluate the effects of different compilers and optimizations on Re-
animator’s accuracy. Specifically, we aim to test whether a genotype model extracted
from a binary can be successfully matched against binaries that were compiled with
different compiler versions or optimization options. For this, we use the same dataset of
208 bot sources, and the same genotype models discussed in the previous section.

As a first test, we re-compiled the bot sources using the same compiler (Microsoft Vi-
sual Studio 2005), but with different optimization and inlining options. The results are
summarized in Table 4.2. The table shows that for all the genotype models, except for
simplespam, different compiler options have a very limited effect on the Reanimator
results. The number of matching binaries are reduced by less than 7%. The simplespam
genotype model is more brittle. This is because the rbot sample implements this func-
tionality in only 37 lines of code, as opposed to 60 to 392 lines for the other behaviors.
Clearly, code re-use is easier to detect when larger code fragments are involved.

For the second test, we re-compiled ten of the 208 bot samples using different versions
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Table 4.2: Number of samples (out of 208) matching each behavioral model in (S)tatic
and (D)ynamic mode, using different compilation options.

Compiler options
httpd keylog killproc simplespam udpflood sniff
S D S D S D S D S D S D

No parameters 144 144 133 133 149 149 135 135 136 136 129 129
Minimize Size 154 154 133 133 158 158 158 158 138 138 134 134
Optimize for Speed 144 144 133 133 149 149 1 1 136 128 129 124
Full Optimization 144 144 133 133 149 149 1 1 136 128 129 124
Only inline 144 144 133 133 149 149 135 135 136 136 129 129
Any suitable 144 144 133 133 149 149 135 135 136 136 129 129

Table 4.3: Number of samples (out of 10) matching each behavioral model in (S)tatic
and (D)ynamic mode, using different compilers.

Compiler
httpd keylog killproc simplespam udpflood sniff
S D S D S D S D S D S D

VS 2003 10 10 10 10 10 10 10 10 10 10 10 10
VS 2005 10 10 10 10 10 10 10 10 10 10 10 10
VS 2008 10 10 10 10 10 10 10 10 10 10 10 10
Intel 10 0 0 0 0 0 0 0 0 0 0 0
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of the Visual Studio compiler, as well as the Intel C++ Compiler Professional Edition
11.1. We restricted this test to ten samples because we were not able to completely
automate the compilation process with different compilers. More precisely, we learned
that different compilers accept slightly different dialects of C source code, and hence,
source code needed to be adapted to be accepted by a different compiler.

As can be seen in Table 4.3, Reanimator is robust to different compiler versions, but
mostly fails to match genotypes in binaries produced by a completely different compiler.
Nonetheless, our results compare favorably to the state-of-the-art work on binary clone
detection [33]. Results from [33] show false negative rates of over 96% on identical
functions when simply changing compiler options.

While a malware author could still attempt to evade our tool by re-compiling malware
with different compilers, this only allows him to generate a limited number of variants.
To correctly match against all samples, Reanimator would simply need to generate a
genotype model for each variant.

4.4.4 Genotype Matching Results

In this section, we discuss Reanimator’s effectiveness on four real-world datasets:

� irc bots: This dataset consists of 10,238 binaries that performed IRC traffic when
analyzed in Anubis, and are, therefore, likely to be IRC-based bot samples. Furthermore,
these samples were selected based on the output of the SigBuster tool for not being
packed with a known packer.

� packed bots: This dataset is similar to the irc bots dataset. It consist of 4,523 binaries
that perform IRC traffic during Anubis analysis. SigBuster was able to recognize that
these samples are packed.

� pushdo: This dataset consists of 77 pushdo binaries. To identify Pushdo, we relied on
anti-virus signatures to select 25 samples. We also used a known, characteristic behavior
of the Pushdo sample observed during analysis in Anubis to identify another 52 samples.
Specifically, Pushdo samples request updates by sending an HTTP query for a URL that
starts with the string /40E8.

� allaple: This dataset consists of 64 Allaple samples, identified using anti-virus signa-
tures.

Table 4.4 shows the results of matching the six genotype models extracted from the
rbot sample against the two datasets of IRC bots. To compare the coverage provided
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Table 4.4: Genotype matching results on IRC datasets.

Genotype Phenotype
irc bots packed bots

B S D B ∩ S B S D B ∩ S

httpd backdoor 2014 636 635 279 840 425 425 264
keylog keylog 0 293 254 0 0 120 111 0
killproc killproc 0 400 400 0 4 62 62 0
simplespam spam 154 409 409 0 53 204 204 0
udpflood packetflood 0 374 342 0 0 139 122 0
sniff sniff 43 270 72 0 120 204 45 0

Table 4.5: Genotype matching results on pushdo and allaple datasets.

Genotype
pushdo allaple

B S D B ∩ S B S D B ∩ S

drop 50 54 54 46 0 0 0 0
spam 1 43 42 1 0 0 0 0
scan 23 0 0 0 58 61 61 58
rpcbind 5 9 0 1 62 61 61 58
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by our tool with the results reported by dynamic analysis approaches, we show, for
each genotype, the detection results for the corresponding phenotype based on a single
execution in Anubis. The observed, dynamic behaviors in Anubis are shown in columns
marked with B.

Comparing the Anubis results with the static and dynamic Reanimator results shows
that, even with a limited set of genotypes derived from a single malware binary, our tech-
niques can dramatically improve the number of malware capabilities that are discovered.
For instance, for the sniffing behavior, Anubis detects 163 samples, while Reanimator
detects 474. For some of the other genotypes, the increase in coverage is even more
significant. For example, only four binaries killed another process while executed in
Anubis.

The B ∩ S column shows the number of samples matched by both Reanimator and
Anubis. That fact that, for most behaviors, no samples were matched by both Anu-
bis and Reanimator may seem surprising at first. However, it does not indicate false
negatives on Reanimator’s part. The genotype models detected by Reanimator cor-
respond to a single implementation of a certain behavior. Hence, completely unrelated
implementations would require additional models. The samples that included the sim-
plespam phenotype according to Reanimator, for instance, did not send spam during
Anubis analysis. This indicates that, during analysis, the bot did not receive commands
triggering this behavior. The likely reason is that the spam functionality modeled by
the simplespam genotype is very primitive compared to modern, template-based spam
engines. As a result, it is rarely (or never) used.

Table 4.5 shows results on the pushdo and allaple datasets. For some genotypes,
Reanimator does not provide a significant additional coverage. These genotypes corre-
spond to behaviors that are performed by the malware every time it runs, such as drop-
ping a payload by Pushdo. Nevertheless, we gain some additional coverage (8 samples)
in cases where a functionality was not successfully executed in Anubis. In this specific
case, this is because the Pushdo command and control servers could not be reached. For
the spam behavior, Reanimator provides a significant increase in coverage.

4.4.5 Performance

In this section, we briefly discuss the performance of the Reanimator genotype model
extraction and genotype model matching techniques.

� Genotype model extraction: Performing genotype model extraction on a single, five-
minute execution of a binary in Anubis required under two minutes on standard desktop
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hardware. Thus, it is feasible in practice to integrate model extraction into the workflow
of a large-scale malware analysis system such as Anubis.

� Genotype model matching: The genotype model matching techniques used by Rean-
imator are efficient. Matching against the entire 2.5GB irc bots dataset (with more
than ten thousand samples) took 2, 511 seconds in total on standard desktop hardware.
Hence, around .25 seconds were spent on each binary. This performance is negligible
compared to the cost of dynamic analysis.

4.4.6 Limitations

In our experiments, we have seen that our genotype matching technique is successful in
statically analyzing real-world malware code and finding dormant functionality. How-
ever, malware authors could make it more difficult for Reanimator to perform this
matching step. For this, they could develop evasion techniques specifically targeted at
our tool, such as semantics-preserving obfuscation of the control flow graph. As an exam-
ple, they could intersperse their program’s entire CFG with a large number of spurious
nodes and edges. Such techniques could be countered by performing genotype model
matching using more powerful, semantic-aware models [31].

On the other hand, malware authors are more likely to prefer generic evasion tech-
niques that are capable of defeating a wide range of analysis and detection approaches.
This goal can be achieved by advanced packing techniques (such as emulation-based
packing and conditional code obfuscation) that cannot be easily defeated using generic
unpacking methods. While recent work has addressed emulation-based packing [35],
conditional code obfuscation [36] can, in certain settings, provide strong guarantees that
the code cannot be analyzed statically. This is a limitation that Reanimator, or any
other tool relying on static analysis, faces.

Another limitation of our approach is that, to generate a genotype model, Reanima-
tor needs to observe the execution of the corresponding behavior in at least one dynamic
analysis run. Therefore, behavior that is never executed inside our sandbox cannot be
detected. As a consequence, similar to other dynamic analysis approaches, Reanimator
can be defeated by malware that detects the analysis sandbox and refuses to run. Fur-
thermore, it cannot detect time- or logic- bombs until they are triggered by at least one
sample. However, it may be possible to combine our technique with other approaches
for improving the coverage of dynamic analysis, such as multiple path exploration [26].
Using Reanimator, the insight provided by applying such computationally-expensive
techniques to a single malware execution could be leveraged to provide information for
other samples.

FP7-ICT-216026-WOMBAT 53
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In order to respond to the increasing number of new samples of malware created daily,
novel techniques to quickly assess whether or not a given sample is new and worthy of
analysis are needed.

In the context of wombat we dedicated some effort to low-cost techniques that could
allow to cope with the large number of malware instances produced by polymorphic
techniques and to easily distinguish them from new malware variants.

In particular, as reported in D11 and in this deliverable, we experimented with struc-
tural information on the malware samples to assess the novelty of a given sample and
obtain a preliminary analysis of it.

As reported in Chapter 2, malware can be clustered according to static, structural
features. We actually developed two approaches, one solely based on static characteris-
tics that can be inferred by the analysis of the Portable Executable (PE) format headers
of Windows executables; the other based on the pairwise difference between all sam-
ples. Both have given interesting and promising results, which will also impact further
deliverables of the project.

Chapter 3 described how Argos was extended for structural analysis of the shellcode
collected during an attack. This extension is able to analyze shellcode and extract the
different layers of unpacking that it employs and the final “real” shellcode that performs
useful actions for the attacker.

Finally, Chapter 4 demonstrates how we can combine dynamic and static analysis
to identify dormant functionality in malware. The main insight behind our system is
that we can leverage a single dynamic observation of malicious behavior in one malware
sample to statically detect the same functionality in other malware programs. Thus,
we can significantly increase our knowledge about the capabilities of malicious code
when compared to the results delivered by dynamic analysis alone. Our experiments
demonstrated that the generated models accurately capture code parts (genotypes) that
are responsible for a diverse set of malicious behaviors. Moreover, they showed that
the system, which we called Reanimator, can significantly increase the coverage of
dynamic analysis systems.

In conclusion, our experiences confirmed that structural information can be used to
obtain a preliminary clustering of malware in families, to analyze and unpack the shell-
code used in an attack, and to statically seek for a specific interesting malware behavior
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which has been dinamically observed in a given sample.
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