
SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

WORLDWIDE OBSERVATORY OF
MALICIOUS BEHAVIORS AND ATTACK THREATS

D23 (D5.3) Early Warning System:
Experimental report

Contract No. FP7-ICT-216026-WOMBAT

Workpackage WP5 - Threats Intelligence
Author Adam Kozakiewicz
Version 1.0
Date of delivery M40
Actual Date of Delivery M40
Dissemination level Public
Responsible NASK
Data included from EURECOM, FORTH, HISPASEC, NASK, TUV

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°216026.

SEVENTH FRAMEWORK PROGRAMME
Theme ICT-1-1.4 (Secure, dependable and trusted infrastructures)

The WOMBAT Consortium consists of:

France Telecom Project coordinator France
Institut Eurecom France
Technical University Vienna Austria
Politecnico di Milano Italy
Vrije Universiteit Amsterdam The Netherlands
Foundation for Research and Technology Greece
Hispasec Spain
Research and Academic Computer Network Poland
Symantec Ltd. Ireland
Institute for Infocomm Research Singapore

Contact information:
Dr Marc Dacier
2229 Routes des Cretes
06560 Sophia Antipolis
France

e-mail: Marc_Dacier@symantec.com
Phone: +33 4 93 00 82 17

Marc_Dacier@symantec.com

Contents

1 Introduction 8

2 FIRE: FInding Rogue nEtworks 9
2.1 Improved Data . 9
2.2 Data Analysis . 11

2.2.1 Autonomous Systems . 14
2.2.2 Threat Lifetime . 15

3 HoneySpider Network – FIRE integration 20
3.1 Primary mode of use – clash of philosophies 20
3.2 Problem of false positives . 21
3.3 Identification of backend servers . 22
3.4 Summary . 23

4 EXPOSURE (Eurecom) 24
4.1 Finding Malicious Domains Using Passive DNS Analysis 24
4.2 The Approach of Exposure . 26

4.2.1 Extracting DNS Features for Detection 26
4.2.2 Architecture of EXPOSURE . 30
4.2.3 Real-Time Deployment . 30

4.3 Evaluation of Exposure . 31
4.3.1 DNS Data Collection for Offline Experiments 31
4.3.2 Experiments with the Offline Data Set 32
4.3.3 Real-World, Real-Time Detection with Exposure 32

4.4 Real-Time Deployment of Exposure . 33

5 BANOMAD: BANking Oriented Malware Analysis Droid 35
5.1 What is a banking trojan? . 35
5.2 How do banking trojans work? . 35

5.2.1 Data filtering . 35
5.2.2 Entity monitoring . 37
5.2.3 Data Harvesting . 40

4

5.2.4 Data forwarding . 43
5.2.5 Money theft . 44

5.3 BANOMAD: VirusTotal based early warning system for banking trojan
and targeted attacks . 45
5.3.1 Keystone hypothesis . 46
5.3.2 Functional blocks . 46
5.3.3 Image dump sandbox . 49
5.3.4 BANOMAD-YARA: banker family identifier 52
5.3.5 Behavioural analysis sandbox . 55
5.3.6 Python analysis framework . 59
5.3.7 Report generator . 62

5.4 Setup output . 62
5.5 Experimental results . 65
5.6 Current research . 69
5.7 Limitations . 71
5.8 Conclusion . 72

6 HoneyBuddy 74
6.1 Attacks on Instant Messaging networks . 74
6.2 MyIMhoneypot, a detection service . 75

7 Conclusion 78

5

6

Abstract

A large part of Workpackage 5 concerns the Early Warning System functionality. This
deliverable offers a report of the experiments carried out as part of the effort to create
the Early Warning System. Several specialized alerting systems are presented, including
FIRE, Exposure, BANOMAD and HoneyBuddy myIMhoneypot

1 Introduction

Each year, the Internet becomes a more important part of the average person’s life. Its
abilities are no longer limited to presenting information. We use it to purchase things
(and pay for them), plan evenings, stay in touch with friends, share documents, photos,
chat and more. As a large part of the society becomes dependent on the Internet in
everyday life, a rich hunting ground opens up for different kinds of malicious activity.

The role of security specialists is to investigate such threats, learn about them and
counter them. A large part of the wombat project focused on supporting them in these
actions by enabling the sharing of data using the WOMBAT API, creating new data
sources, developing new analysis methods and data enrichment techniques. An equally
important task is to publish important security alerts in a timely manner. This is the
goal of the Early Warning System.

The initial plan of this deliverable included the specification and creation of a single
Early Warning System, which would have access to all the datasets and analysis methods,
extract the important information and provide it to the users who need it.

During the work in WP5 it quickly became clear that this approach is actually coun-
terproductive. The collected ideas for elements of the Early Warning System differ in too
many aspects to smoothly integrate with each other. They work in different timescales,
with different goals, monitor different parts of the Internet technology landscape and
even have different target groups. The synergy is dwarfed by the differences. For this
reason the consortium decided to develop parts of the Early Warning System as separate
services, limiting the integration to places with sufficient synergy (e.g. sharing datasets).

The following chapters describe the services built as elements of the Early Warning
System. The first two chapters describe the FIRE system (FInding Rogue nEtworks,
TUV) – Chapter 2 describes the advancements in the system since its description pre-
sented in D12, while Chapter 3 concentrates on its integration with NASK’s HoneySpider
Network. Chapter 4 describes Exposure – the Eurecom’s system warning about mali-
cious domain. Chapter 5 describes the Hispasec’s BANOMAD system, designed for the
banking industry and warning against banking trojans and targetted attacks. Finally, in
Chapter 6 FORTH describes the HoneyBuddy myIMhoneypot, warning instant messag-
ing users about threats using this technology. The last chapter presents a brief summary
of the document.

8

2 FIRE: FInding Rogue nEtworks

In this section, we will present results obtained from the long-term deployment of FIRE.
FIRE is a system for identifying networks that persistently host malicious behavior
such as botnet command and control servers or malicious web sites. FIRE thus helps
locate networks that host malicious infrastructure and, by malice or disinterest, do not
take timely action to take it down. The top offenders are listed in a public web site1.
FIRE was developed as part of wombat, and the system was presented in a research
paper [13] and included in wombat deliverable “D12 (D5.1) Root Causes Analysis”. In
this deliverable, we will present additional results, anecdotes and insight derived from
the long-term operation of FIRE.

2.1 Improved Data

Since the initial deployment of FIRE described in D12 and in [13], we have made a
number of improvements to the system that have increased the coverage of the malicious
activities that we are able to track. FIRE tracks the following three classes of malicious
infrastructure:

• Command and Control (C&C): Servers used by botnet operators to dynami-
cally control the behavior of infected computers.

• Drive-by-Download: A drive-by-download is an attack delivered by a malicious
web sites to visitors with vulnerable web browser configurations, that allows an
executable to be automatically installed on the victim machine without user inter-
action. Since the malicious web sites themselves are frequently hosted by benign,
compromised hosts, they are not tracked by FIRE. Instead, we track the backend
servers that deliver the malicious executables.

• Phishing: Servers that host web sites designed to trick users into revealing sensi-
tive information, such as credit card numbers or credentials for other web sites.

1http://maliciousnetworks.org

9

2 FIRE: FInding Rogue nEtworks

FIRE

Wepawet

C&C Servers

Phishing Servers

Drive-by-Download
Servers

Anubis

Figure 2.1: Sources of information used by FIRE

Figure 2.1 provides an overview of the sources of information on malicious infrastruc-
ture that are currently used by FIRE. To identify phishing servers, we rely on Phish-
Tank2, an external source of manually verified phishing URLs. C&C servers are detected
based on the network behavior of samples observed within the Anubis malware analysis
sandbox [6]. For drive-by-download attacks, we include servers identified by Wepawet [8]
and HoneySpiderNetwork [11]. Compared to the initial version of FIRE, we have ex-
tended and improved the sources of data that the system relies on.

• HoneySpider Network: FIRE intially used two sources of information for drive-
by-download servers. The first is Wepawet, a client honeypot that uses an instru-
mented browser to detect malicious javascript code. Wepawet was developed at
the University of California at Santa Barbara, and has been integrated into the
wombat project through the wombat API. In addition to Wepawet, the orig-
inal FIRE deployment made use of a high interaction client-honeypot based on
Capture-HPC3. This solution had been developed at the Technical University Vi-
enna, but suffered from limited scalability and high maintenance. Therefore, we
have replaced this source of information with the HoneySpiderNetwork (HSN) that

2http://www.phishtank.com
3https://projects.honeynet.org/capture-hpc

10 SEVENTH FRAMEWORK PROGRAMME

2.2 Data Analysis

was developed by NASK as part of wombat. HSN also includes a high interac-
tion honeypot component based on Capture-HPC, but it is a more robust and
scalable system. Thanks to a large-scale deployment and a filtering layer that
uses machine-learning techniques to select suspicious web sites for analysis, HSN
is able to detect a significantly larger amount of malicious web sites. An in-depth
description of HSN was provided in wombat deliverable “D07 (D3.2) Design and
prototypes of new sensors”.

• Improved C&C detection: To identify C&C servers, we rely on the behavior
of samples observed within the Anubis malware analysis sandbox. However, for
a variety of reasons, not all the network traffic generated by analyzed samples is
related to C&C activity. FIRE therefore makes use of signatures and heuristics
to detect C&C communication within Anubis. Initially, FIRE was able to detect
IRC-based C&C based on a set of heuristics, and HTTP-based C&C based on a
small set of network signatures. Over time, we have made several improvements
to C&C detection in FIRE:

– We have greatly extended the set of signatures used to detect HTTP-based
C&C traffic. We have also verified that these signatures detect C&C commu-
nication in a significant fraction of analyzed samples and that the detected
C&C servers cover almost all of the most prevalent malware families currently
in the wild.

– We have extended C&C detection to TCP protocols other than IRC and
HTTP, with a new set of signatures that reveals a significant number of
previously “invisible” C&C servers.

– C&C detection in FIRE also indirectly benefits from many improvements
that have been made to Anubis itself, and from the increase in the number of
samples that Anubis is able to analyze each day, which is now over 30,000.

2.2 Data Analysis

The internet threat landscape is extremely dynamic. The long-term deployment of
a large-scale monitoring infrastructure such as FIRE provides us rich opportunities to
observe trends in internet threats. However, when analyzing these trends, we have to take
into account that our coverage can never be perfect. Because of the adversarial nature
of the monitoring task, we may have fluctuations in our coverage of internet threats
that reflect the current state of the arms race between our analysis and miscreants’

FP7-ICT-216026-WOMBAT 11

2 FIRE: FInding Rogue nEtworks

Mar 2009
Jun 2009

Sep 2009

Dec 2009

Mar 2010
Jun 2010

Sep 2010

Dec 2010

Mar 2011
0

500

1000

1500

2000

2500

Ac
tiv

e
M

al
ic

io
us

 S
er

ve
rs

C&C
Phishing
Drive-by

Figure 2.2: Active malicious servers by class of threat (smoothed).

Mar 2009
Jun 2009

Sep 2009

Dec 2009

Mar 2010
Jun 2010

Sep 2010

Dec 2010

Mar 2011
0

20

40

60

80

100

120

M
al

sc
or

e

Figure 2.3: Malscores of top 10 malicious Autonomous Systems (smoothed).

12 SEVENTH FRAMEWORK PROGRAMME

2.2 Data Analysis

Mar 2009
Jun 2009

Sep 2009

Dec 2009

Mar 2010
Jun 2010

Sep 2010

Dec 2010

Mar 2011
0

100

200

300

400

500

600

700

800
Au

to
no

m
ou

s
Sy

st
em

s
All
C&C
Phishing
Drive-by

Figure 2.4: Autonomous Systems hosting at least one malicous server (smoothed).

attempts to escape detection. When discussing observed trends, we will therefore take
into account the effect of changes in our own monitoring and detection techniques, and
attempt to differentiate it from actual changes in the threat landscape.

Figure 2.2 shows the total number of long-lived malicious servers monitored by FIRE
that were active on each day, over a period of over two years starting on January 1st,
2010. Note that the graph is smoothed using a 30-day sliding window to improve read-
ability. The amount of active phishing servers is roughly constant over the entire period.
For C&C and Drive-by-download servers, however, the picture is extremely different,
with sharp increases compared to the early months of FIRE operation, and signficant
fluctuations. Consider that the top malicious ASNs presented in [13] were based on
data from June 1st, 2009. Since then, the amount of malicious servers detected has in-
creased by an order of magnitude. For C&C servers, we can attribute a large part of this
variation to improvements in our detection of C&C communication over time. Specifi-
cally, in March 2010 we deployed a large set of new signatures for HTTP-based C&C,
and in October 2010 we introduced the first signatures for TCP protocols other than
HTTP or IRC. Both events correspond to steep increases in the amount of C&C servers
tracked. For drive-by malware download servers, the reasons for the variations are less
clear. These variations largely correspond to fluctuations in the amount of malicious

FP7-ICT-216026-WOMBAT 13

2 FIRE: FInding Rogue nEtworks

pages detected by Wepawet over time. These in turn may be related to the Wepawet’s
total analysis throughput (number of web pages analyzed per day) and to the effetive-
ness of its detection techniques. Wepawet is continuously updated by its developers to
be able to recognize novel infection vectors and to remain ahead of evasion techniques
employed by malicious web pages. Unfortunately, the effect of the integration of HSN
on our coverage of drive-by-download servers is not yet visible in this data, because the
integration was completed at the very end of the period considered. Since our detection
techniques have such a significant effect on the amount of malicious servers we observe,
we are unable to draw any conclusions on variations in the amount of malicious servers
on the internet.

2.2.1 Autonomous Systems

The primary goal of FIRE is to identify the networks that provide reliable hosting to
internet criminals. For this, we consider the Autonomous System (AS) to which each
malicious IP belongs. We assign a Malscore to each AS that is based on the amount
of malicious activity it hosts and on the size of the network. This is to avoid assigning
excessively high Malscores to large networks that host a small amount of malicious
servers, in proportion to the total amount of hosts. Figure 2.3 shows the evolution over
time of the Malscores of the ten autonomous systems with the highest Malscores. Note
that the top ten networks change over time: For this graph, we simply select the top ten
Malscores on each day.

In this case, we can observe a clear trend. The top malscores have decreased over
time: No network has had a Malscore above twenty in the last year, and the top ten
networks have become tightly clustered around a Malscore of ten. This would seem to
be in contrast with the results discussed in the previous section: The Malscores of the
networks hosting the most malicious activity have decreased, despite the fact that the
total amount of malicious activity that we are able to monitor has increased significantly,
as reflected in Figure 2.2. In fact, there is no contradiction; The reason is that malicious
servers are now spread across a much larger number of Autonomous Systems. Figure 2.4
shows that the total number of ASs tracked by FIRE has increased from under two
hundred in June 2009, to a peak of almost eight hundred. Comparing Figure 2.4 with
Figure 2.2 shows that this increase is roughly aligned with the variations in malicious
servers discussed in the previous section.

The decrease in the top Malscores shown in Figure 2.3 seems to reflect an actual change
in the threat landscape. The reasons for this change are twofold. On the one hand, we
have a direct effect of FIRE’s deployment, and of the public availability of the list of
top twenty Autonomous Systems by Malscore that is provided by the maliciousnetworks

14 SEVENTH FRAMEWORK PROGRAMME

2.2 Data Analysis

website. This service is well known in the security community, and has attracted some
media attention [9]. Several hosting providers who found themselves in the list of the
top twenty malicious networks have taken an interest in addressing the problem and
have contacted us. In each case, we provided additional information on the malicious
servers in their network. This typically led to sharp decreases in Malscore over the
following months. However, there is a second, probably more important reason for the
decrease in the top Malscores. This is the fact that, after the de-peering of malicious
networks such as Atrivio and McColo in 2008, and 3FN in 2009 [10], internet criminals
have changed modus operandi to avoid “putting all their eggs in one basket”. Instead of
relying on a few complicit or negligent network operators, they now prefer to distribute
their infrastructure across multiple providers. As a consequence, for example, taking
down all the C&C servers of a botnet now typically involves interacting with several
ISPs.

2.2.2 Threat Lifetime

0 20 40 60 80 100
Lifetime (days)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Figure 2.5: Cumulative distribution function of lifetime of drive-by-download server IPs

Figures 2.5-2.9 show the Cumulative Distribution Function of the lifetime of tracked
malicious servers in the various classes. Results for C&C servers have been broken down
to HTTP, IRC, and other TCP protocols. Results are consistent across most of these

FP7-ICT-216026-WOMBAT 15

2 FIRE: FInding Rogue nEtworks

0 20 40 60 80 100
Lifetime (days)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Figure 2.6: Cumulative distribution function of lifetime of phishing server IPs

0 20 40 60 80 100
Lifetime (days)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Figure 2.7: Cumulative distribution function of lifetime of IRC C&C server IPs

16 SEVENTH FRAMEWORK PROGRAMME

2.2 Data Analysis

0 20 40 60 80 100
Lifetime (days)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

Figure 2.8: Cumulative distribution function of lifetime of HTTP C&C server IPs

0 20 40 60 80 100
Lifetime (days)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Figure 2.9: Cumulative distribution function of lifetime of other TCP C&C server IPs

FP7-ICT-216026-WOMBAT 17

2 FIRE: FInding Rogue nEtworks

0 20 40 60 80 100
Lifetime (days)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Figure 2.10: Cumulative distribution function of lifetime of other TCP C&C server do-
mains

Table 2.1: Total malicious IPs and domain names observed.

IPs Domains

Drive-by 8357 8495
IRC C&C 987 237
HTTP C&C 10599 7568
TCP C&C 73873 3943

18 SEVENTH FRAMEWORK PROGRAMME

2.2 Data Analysis

figures, with close to 20% of threats having a lifetime of less than one day, and another
20% approximately that have a lifetime longer than a hundred days. The obvious outlier
is Figure 2.9, that shows the lifetimes for C&C servers that use other TCP protocols.
In this case, about 80% of servers have a lifetime below one day. In fact, over 50% have
a lifetime of exactly zero, meaning that the IP was successfully contacted only once by
FIRE’s monitoring infrastructure. The reason for these results is that most of these IPs
are part of a fast-flux infrastructure. To contact these C&C servers, bots first resolve a
domain name. In fast-flux hosting, botnet operators frequently change the IP addresses
to which this domain resolves. These IP addresses may correspond to infected bots that
are temporarily used to host the botnets’ C&C servers. This is confirmed by Figure 2.10,
which shows the lifetime of domain names of malicious TCP C&C servers. This graph is
much more similar to Figures 2.5-2.8. Table 2.1 provides further evidence that fast-flux
behavior is much more wide spread for C&C infrastructure that does not rely on the
HTTP or IRC protocols. FIRE has observed over 70,000 IP addresses of TCP C&C
servers, but these correspond to under 4,000 domain names. In contrast, IRC-based
C&C frequently relies on hardcoded IP addresses, without making use of domain name
resolution. The HTTP protocol, on the other hand, has the peculiarity that it allows
the co-existance of multiple web sites on a single IP, distinguished only by the domain
name. This allows malicious web sites deployed on shared hosting providers to share the
hosting server and IP address with benign web sites, complicating takedown.

FP7-ICT-216026-WOMBAT 19

3 HoneySpider Network – FIRE integration

As mentioned in the previous chapter, the HoneySpider Network is one of the sources of
information for the FIRE system. However, the integration of these systems was not a
trivial task. In this chapter we will shortly present the encountered difficulties and the
ways to overcome them.

3.1 Primary mode of use – clash of philosophies

The HoneySpider Network is a high-throughput client honeypot focusing on detection
of drive-by-downloads. The detection methods are twofold:

• The low interaction component (LIM) performs mostly static analysis of the con-
tent of suspicious websites. The content is downloaded using browser emulation,
and then processed using several heuristic techniques – mostly static analysis,
although e.g. JavaScript code is actually executed in a simulated browser environ-
ment to aid deobfuscation. Obviously this mode of operation limits the ability of
this module to reach the actual malicious payload.

• The high interaction component (HIM) performs dynamic anomaly detection. The
webpage is opened in an actual browser running under control of a typical operating
system inside a virtual machine. Actions performed in the system are recorded and
analysed to detect malicious behavior. Payload can actually be executed, unless
the exploited vulnerability is not present in the monitored system.

The FIRE system is also concerned with drive-by-downloads (although not as the only
focus – C&C servers and phishing activity are also monitored). The goal in this case is
to verify whether detected malicious behavior is promptly dealt with, thus identifying
networks which do not respond adequately to identified threats, providing safe harbour
for malicious activity.

Since both systems deal with drive-by-downloads, cooperation would seem not only
natural, but relatively easy. Unfortunately, the goals of both systems are very different,
resulting in incompatible data collection needs.

20

3.2 Problem of false positives

FIRE is focused on monitoring the backend servers, the only part of the infection
chain which is directly malicious. The earlier stages in the tree of requests leading to
a drive-by-download can be simply infected pages redirecting to the malware. Without
a working backend server they become benign, even if the injected redirections are not
removed.

FIRE is capable of monitoring of the availability of the malicious files, but to do that
it first needs to identify the backend servers which serve them. This is the intended goal
of integration with the HoneySpider Network.

The primary mode of use of the HoneySpider Network is, however, completely differ-
ent. It was built to automatically classify large amounts of URLs from different sources,
singling out the malicious ones. The main function of the system is to find out whether
a given URL leads to an infection and – if so – provide sufficient data for effective in-
vestigation of the threat. In other words, the focus is on the original URL submitted
to HoneySpider Network (or obtained automatically from some source). The system
collects all available information, but there is no need to identify precisely the actual
backend server. This information is therefore not present in the system.

Both systems look at the problem of drive-by-downloads in completely different ways.
To provide any useful data to FIRE the HoneySpider Network would either have to be
redesigned, or some way must be found to extract the necessary information from the
available data.

3.2 Problem of false positives

Visiting many of the URLs classified by the HoneySpider Network as malicious or sus-
picious does not in fact result in infection of the user’s machine. Such cases may or may
not be false positives from the HoneySpider’s point of view. The classification may be
a result of successful detection of an injected script or other redirection mechanism (the
main function of LIM). The backend server may already be down, but the result is still
important, as it allows us to identify a compromised web page, which may easily start
infecting again – the administrators of that system should be notified. Still, from the
point of view of FIRE, such URLs are definitely false positives. In the best case they
increase the amount of processing needed to identify the backend servers. In the worst
case, one of the requests may be selected, even though it is not really malicious.

This type of URLs can easily be eliminated using results from HIM. If the drive-
by-download does not occur, HIM classification should be benign – redirections do not
directly cause any suspicious activity inside the virtual machine. Unfortunately, HIM
also creates many false positives.

FP7-ICT-216026-WOMBAT 21

3 HoneySpider Network – FIRE integration

The above conclusion made it clear, that the rate of false positives from HIM must
be reduced. This resulted in the Capture False Positives Reduction project, described
in detail in Deliverable D21.

Even after this modification, false positives do occur quite frequently. The generation
of data for FIRE must therefore be performed in a rather conservative way – unless there
are convincing reasons to believe that the backend server was identified correctly, the
result should not be passed to FIRE.

3.3 Identification of backend servers

The identification of backend servers must rely only on the information available in the
HoneySpider Network. The most useful data are:

• The final classification provided by LIM and HIM.

• List of requests generated by the LIM while scanning the URL and the individual
classification of each request.

• List of requests generated by the HIM while scanning the URL.

• List of suspicious actions recorded by HIM.

Manual analysis of multiple logs provided some rules which may identify a request to
a backend server.

• The URL must be classified as malicious by HIM and at least as suspicious by
LIM. Among the suspicious actions recorded by HIM there must be at least one
case of writing to an executable file. These two conditions must be met before any
of the later rules can be applied. Creation of a process from the written executable
file is a good confirmation, but it is not strictly required (Capture may miss some
of the actions).

• The lists of requests generated by LIM and HIM are compared. The requests
appearing only in HIM are especially interesting.

• All requests which only appear in HIM and which ask for an executable file should
be reported – they almost surely refer to a backend server. This is especially true
if there is only one such request and/or there is only one non-benign request from
LIM and it is to the same host.

22 SEVENTH FRAMEWORK PROGRAMME

3.4 Summary

• If there is only one non-benign request from LIM, then it can be a candidate,
especially if it also appears as a request from HIM and if it is for and executable
file.

As can be seen, the weight of the above rules may differ - a single request for an exe-
cutable appearing only among requests from HIM is much more likely to really reference
a backend server than a request appearing both in HIM and LIM requests. Finding the
proper threshold is an experimental task.

3.4 Summary

Since the HoneySpider Network is nowadays complete, modifying it is not a very good
idea. Instead, the entire backend server identification logic was implemented in HSN
WAPI, as an additional method of the object Dataset. The implementation correlates
data from two or more (depending on Honeyspider configuration) databases and provides
a cache avoiding renewed processing of the same candidate requests. This proves the
versatility of the WAPI – the offered services may be quite complex, not just simple
database access methods.

The data used to identify backend servers was already available in the WAPI, so
the selection could alternatively be implemented on the FIRE side, using only existing
WAPI services. Implementation of a new service was chosen for performance reasons.
There are many requests in each scanned URL and each one is presented in WAPI as a
separate object. This is very useful for manual use and for automated investigation of
a suspicious URL, but not for automatic processing of many URLs, where all requests
must be analysed, resulting in hundreds of long distance SOAP calls for each URL.
Replacing them with one call to a complex method, which however can work directly
on the database not only reduces the delays by orders of magnitude, but also in fact
reduces the load on the server.

Using the HoneySpider Network for backend server identification proved difficult but
entirely possible. Depending on further observations we plan to add more rules, identi-
fying the servers correctly in more cases.

FP7-ICT-216026-WOMBAT 23

4 EXPOSURE (Eurecom)

In this section, we will present EXPOSURE and give some results obtained from its real-
time deployment. Exposure is a system that employs large-scale, passive DNS analysis
techniques to detect domains that are involved in malicious activity. The malicious
domains identified by Exposure are reported on a daily basis in a public web site1.
Exposure was developed as part of wombat and employs a number of systems that are
parts of wombat such as Anubis malware analysis sandbox [6] and Wepawet [8]. It was
presented in a research paper [7]. In this deliverable, we will provide technical details
about Exposure and results of its real-time deployment.

4.1 Finding Malicious Domains Using Passive DNS Analysis

The Domain Name System (DNS) is a hierarchical naming system for computers, ser-
vices, or any resource connected to the Internet. Clearly, as it helps Internet users
locate resources such as web servers, mailing hosts, and other online services, DNS is
one of the core and most important components of the Internet. Unfortunately, besides
being used for obvious benign purposes, domain names are also popular for malicious
use. For example, domain names are increasingly playing a role for the management
of botnet command and control servers, download sites where malicious code is hosted,
and phishing pages that aim to steal sensitive information from unsuspecting victims.

In a typical Internet attack scenario, whenever an attacker manages to compromise
and infect the computer of an end-user, this machine is silently transformed into a bot
that listens and reacts to remote commands that are issued by the so-called botmaster.
Such collections of compromised, remotely-controlled hosts are common on the Internet,
and are often used to launch DoS attacks, steal sensitive user information, and send
large numbers of spam messages with the aim of making a financial profit.

In another typical Internet attack scenario, attackers set up a phishing website and lure
unsuspecting users into entering sensitive information such as online banking credentials
and credit card numbers. The phishing website often has the look and feel of the targeted
legitimate website (e.g., an online banking service) and a domain name that sounds
similar.

1http://exposure.iseclab.org

24

4.1 Finding Malicious Domains Using Passive DNS Analysis

One of the technical problems that attackers face when designing their malicious infras-
tructures is the question of how to implement a reliable and flexible server infrastructure,
and command and control mechanism. Ironically, the attackers are faced with the same
engineering challenges that global enterprises face that need to maintain a large, dis-
tributed and reliable service infrastructure for their customers. For example, in the case
of botnets, that are arguably one of the most serious threats on the Internet today, the
attackers need to efficiently manage remote hosts that may easily consists of thousands
of compromised end-user machines. Obviously, if the IP address of the command and
control server is hard-coded into the bot binary, there exists a single point of failure for
the botnet. That is, from the point of view of the attacker, whenever this address is
identified and is taken down, the botnet would be lost.

Analogously, in other common Internet attacks that target a large number of users,
sophisticated hosting infrastructures are typically required that allow the attackers to
conduct activities such as collecting the stolen information, distributing their malware,
launching social engineering attempts, and hosting other malicious services such as phish-
ing pages.

In order to better deal with the complexity of a large, distributed infrastructure,
attackers have been increasingly making use of domain names. By using DNS, they
acquire the flexibility to change the IP address of the malicious servers that they manage.
Furthermore, they can hide their critical servers behind proxy services (e.g., using Fast-
Flux [14]) so that their malicious server is more difficult to identify and take down.

Using domain names gives attackers the flexibility of migrating their malicious servers
with ease. That is, the malicious “services” that the attackers offer become more “fault-
tolerant” with respect to the IP addresses where they are hosted.

The key insight of Exposure is that as malicious services are often as dependent on
DNS services as benign services, being able to identify malicious domains as soon as they
appear would significantly help mitigate many Internet threats that stem from botnets,
phishing sites, malware hosting services, and the like. Also, the premise is that when
looking at large volumes of data, DNS requests for benign and malicious domains should
exhibit enough differences in behavior that they can automatically be distinguished.

Exposure introduces a passive DNS analysis approach and a detection system to ef-
fectively and efficiently detect domain names that are involved in malicious activity. It
uses 15 features (9 of which are novel and have not been proposed before) that make
it possible to characterize different properties of DNS names and the ways that they
are used (i.e., queried). The techniques applied to accomplish this do not rely on prior
knowledge about the kind of service the malicious domain provides (e.g., phishing, Fast-
Flux services, spamming, botnets that use a domain generation algorithm, etc.). This is
significantly different from existing techniques that only target Fast-Flux domains used

FP7-ICT-216026-WOMBAT 25

4 EXPOSURE (Eurecom)

in botnet operations. Furthermore, the approach requires less training time, and less
training data than previous approaches [5], and does not have some of their limitations.

4.2 The Approach of Exposure

The goal of EXPOSURE is to detect malicious domains that are used as part of ma-
licious operations on the Internet. To this end, a passive analysis of the DNS traffic
is performed. Since the traffic monitored is generated by real users, the assumption is
that some of these users are infected with malicious content, and that some malware
components will be running on their systems. These components are likely to contact
the domains that are found to be malicious by various sources such as public malware
domain lists and spam blacklists. Hence, by studying the DNS behavior of known mali-
cious and benign domains, the goal was to identify distinguishable generic features that
are able to define the maliciousness of a given domain.

4.2.1 Extracting DNS Features for Detection

Clearly, to be able to identify DNS features that allow to distinguish between benign and
malicious domains, and that allow a classifier to work well in practice, large amounts of
training data are required. As the offline dataset, the recursive DNS (i.e., RDNS) traffic
from Security Information Exchange (SIE) [4]) is recorded. An offline analysis on this
data is performed to determine DNS features that can be used to distinguish malicious
DNS features from benign ones. The part of the RDNS traffic we used as initial input to
our system consisted of the DNS answers returned from the authoritative DNS servers
to the RDNS servers. An RDNS answer consists of the name of the domain queried, the
time the query is issued, the duration the answer is required to be cached (i.e., TTL)
and the list of IP addresses that are associated with the queried domain. Note that the
RDNS servers do not share the information of the DNS query source (i.e. the IP address
of the user that issues the query) due to privacy concerns.

By studying large amounts of DNS data, 15 different features that are used in the
detection of malicious domains are defined. In the following sections, we describe these
features and explain why they might be indicative of malicious behavior.

Time-Based Features

The first component of a DNS record that is analyzed is the time at which the request
is made. Clearly, the time of an individual request is not very useful by itself. However,
when many requests to a particular domain over time are analyzed, patterns indicative of

26 SEVENTH FRAMEWORK PROGRAMME

4.2 The Approach of Exposure

malicious behavior may emerge. In particular, the changes of the volume (i.e., number)
of requests for a domain are examined.

The malicious domains often show a sudden increase followed by a sudden decrease
in the number of requests. This is because malicious services often use a technique
called domain flux [12] to make their infrastructures more robust and flexible against
take downs. Each bot may use a domain generation algorithm (DGA) to compute a list
of domains to be used as the command and control server or the dropzone. Obviously,
all domains that are generated by a DGA have a short life span since they are used
only for a limited duration. Examples of malware that make use of such DGAs are
Kraken/Bobax, the Srizbi bots and the Conficker worm. Similarly, malicious domains
that have recently been registered and are involved in scam campaigns show an abrupt
increase in the number of requests as more and more victims access the site in a short
period of time.

To analyze the changes in the number of requests for a domain during a given period
of time, the period is divided into fixed length intervals. Then, for each interval, the
number of DNS queries that are issued for the domain are counted. In other words, the
collection of DNS queries that target the domain under analysis can be converted into
time series (i.e., chronologically ordered sequences of data values).

The time series analysis is performed on two different scopes: First, the time series is
analyzed globally. That is, the start and end times of the time series are chosen to be
the same as the start and the end times of the entire monitoring period. Second, local
scope time series analysis where the start times and end times are the first and last time
the domain is queried during the analysis interval is applied. While the global scope
analysis is used for detecting domains that either have a short life or have changed their
behavior for a short duration, the local scope analysis focuses on how domains behave
during their life time.

A domain is defined to be a short-lived domain (i.e., Feature 1) if it is queried only
between time t0 and t1, and if this duration is comparably short (e.g., less than several
days). A domain that suddenly appears in the global scope time series and disappears
after a short period of activity has a fairly abnormal behavior for being classified as
a benign domain. Normally, if a domain is benign, even if it is not very popular, the
number of queries it receives should exceed the threshold at least several times during
the monitoring period. Therefore, its time series analysis will not result in an abrupt
increase followed by a decrease as the time series produced by a short-lived domain does.

The main idea behind performing local scope analysis is to zoom into the life time of
a domain and study its behavioral characteristics. From the local scope analysis three
features are extracted. These features may distinguish malicious and benign behavior
either by themselves or when used in conjunction with other features. All the features

FP7-ICT-216026-WOMBAT 27

4 EXPOSURE (Eurecom)

involve finding similar patterns in the time series of a domain. First feature checks if
there are domains that show daily similarities in their request count change over time
(i.e., an increase or decrease of the request count at the same intervals everyday). The
second feature aims to detect regularly repeating patterns. Finally, last one checks
whether the domain is generally in an “idle” state (i.e., the domain is not queried) or is
accessed continuously (i.e., a popular domain).

The problem of detecting both short-lived domains and domains that have regularly
repeating patterns can be treated as a change point detection (CPD) problem. CPD
algorithms operate on time series and their goal is to find those points in time at which
the data values change abruptly. The CPD algorithm that is implemented outputs the
points in time the change is detected and the average behavior for each duration.

DNS Answer-Based Features

The DNS answer that is returned by the server for a domain generally consists of several
DNS A records (i.e., mappings from the host to IP addresses). Of course, a domain
name can map to multiple IP addresses for load balancing.

Malicious domains typically resolve to compromised computers that reside in different
Autonomous Systems (ASNs), countries, and regions. The attackers are opportunistic,
and do not usually target specific countries or IP ranges. Whenever a computer is
compromised, it is added as an asset to the collection. Also, attackers typically use
domains that map to multiple IP addresses, and IPs might be shared across different
domains.

With this insight, four features are extracted from the DNS answer. The first feature
is the number of different IP addresses that are resolved for a given domain during the
experiment window. The second feature is the number of different countries that these
IP addresses are located in. The third feature is the reverse DNS query results of the
returned IP addresses. The fourth feature is the number of distinct domains that share
the IP addresses that resolve to the given domain.

TTL Value-Based Features

Every DNS record has a Time To Live (TTL) that specifies how long the corresponding
response for a domain should be cached. Systems that aim for high availability often set
the TTL values of host names to lower values and use Round-Robin DNS. That is, even
if one of the IP addresses is not reachable at a given point in time, since the TTL value
expires quickly, another IP address can be provided. A representative example for such
systems are Content Delivery Networks (CDNs).

28 SEVENTH FRAMEWORK PROGRAMME

4.2 The Approach of Exposure

Figure 4.1: Overview of EXPOSURE

Unfortunately, setting lower TTL values and using Round-Robin DNS is useful for the
attackers as well. Using this approach, malicious systems achieve higher availability and
become more resistant against DNS blacklisting (DNSBL) and take downs. For example,
Fast-Flux Service Networks (FFSN) [14] are malicious systems that abuse Round-Robin
DNS.

From the TTL value, five features are extracted: Average value for TTL, The standard
deviation of TTL, Number of distinct TTL values used for each domain, Number of TTL
changes observed over time and the percentage usage of specific TTL ranges such as [0, 1),
[1, 10), [10, 100), [100, 300), [300, 900), [900, inf).

Domain Name-Based Features

Benign services usually try to choose domain names that can be easily remembered
by users. For example, a bank called “The Iceland Bank” might have a domain name
such as “www.icelandbank.com”. In contrast, attackers are not concerned that their
domain names are easy to remember. This is particularly true for domain names that
are generated by a DGA.

The main purpose of DNS is to provide human-readable names to users as they of-
ten cannot memorize IP addresses of servers. Therefore, benign Internet services tend
to choose easy-to-remember domain names. In contrast, having an easy-to-remember
domain name is not a concern for people who perform malicious activity. This is partic-
ularly true in cases where the domain names are generated by a DGA. To detect such
domains, two features were extracted from the domain name itself: First, the ratio of
the numerical characters to the length of the domain name, and second, the ratio of the
length of the longest meaningful substring (i.e., a word in a dictionary) to the length of
the domain name.

FP7-ICT-216026-WOMBAT 29

4 EXPOSURE (Eurecom)

4.2.2 Architecture of EXPOSURE

Figure 4.1 gives an overview of the system architecture of the EXPOSURE. The system
consists of five main components:

The first component, the Data Collector, records the DNS traffic produced by the
network that is being monitored.

The second component is the Feature Attribution component. This component is re-
sponsible for attributing the domains that are recorded to the database with the features
that are searched in the DNS traffic.

The third component, the Malicious and Benign Domains Collector, works indepen-
dent of, and in parallel to the Data Collector Module. It collects domains that are known
to be benign or malicious from various sources. Our benign domains sets are composed of
information acquired from Alexa and a number of servers that provide detailed WHOIS
data. In contrast, the malicious domain set is constructed from domains that have been
reported to have been involved in malicious activities such as phishing, spamming, and
botnet infections by external sources such as malwaredomains.com, Phishtank2, and mal-
ware analyzers such as Anubis [6]) and Wepawet [8]. Note that these lists are constantly
updated, and become even more comprehensive over time. The output of the Malicious
and Benign Domains Collector is used to label the output of the Feature Attribution
component.

Once the data is labeled, the labeled set is fed into the fourth component: The Learn-
ing Module. This module trains the labeled set to build malicious domain detection
models. Consequently, these models, and the unlabeled domains, become an input to
the fifth component: The Classifier.

The Classifier component takes decisions according to the detection models produced
by the Learning component so that the unlabeled domains are grouped into two classes:
domains that are malicious, and those that are benign.

4.2.3 Real-Time Deployment

The deployment phase of EXPOSURE consists of two steps. In the first step, the
features that we are interested in are monitored and the classifier is trained based on a
set of domains that are known to be benign or malicious. In a second step, after the
classifier has been trained, the detection starts and domains that are determined to be
suspicious are reported. Note that after an initial period of seven days of training3, the

2http://www.phishtank.com
3We have experimentally determined the optimal training period to be seven days)

30 SEVENTH FRAMEWORK PROGRAMME

4.3 Evaluation of Exposure

classifier is retrained every day. Hence, EXPOSURE can constantly keep up with the
behavior of new malware.

4.3 Evaluation of Exposure

4.3.1 DNS Data Collection for Offline Experiments

Our sensors for the SIE DNS feeds receive a large volume of traffic (1 million queries per
minute on average). Therefore, during our offline experimental period of two and a half
months, we monitored approximately 100 billion DNS queries. Unfortunately, tracking,
recording and post-processing this volume of traffic without applying any filtering was
not feasible in practice. Hence, we reduced the volume of traffic that we wished to analyze
to a more manageable size by using two filtering policies. The goal of these policies was
to eliminate as many queries as possible that were not relevant for us. However, we also
had to make sure that we did not miss relevant, malicious domains.

The first policy we used whitelisted popular, well-known domains that were very
unlikely to be malicious. To create this whitelist, we used the Alexa Top 1000 Global
Sites 4 list. By applying this first filtering policy, we were able to reduce 20% of the
traffic we were observing.

The second filtering policy targeted domains that were older than one year. The
reasoning behind this policy was that many malicious domains are disclosed after a
short period of activity, and are blacklisted. As a result, some miscreants have resorted to
using domain generation algorithms (DGA) to make it more difficult for the authorities
to blacklist their domains. Typically, the domains that are generated by DGAs and
registered by the attackers are new domains that are at most several months old. In our
data set, we found 45.000 domains that were older than one year. These domains received
40 billion queries. Hence, the second filtering policy reduced 50% of the remaining traffic,
and made it manageable in practice.

Clearly, filtering out domains that do not satisfy our age requirements could mean that
we may miss malicious domains for the training that are older than one year. However,
our premise is that if a domain is older than one year and has not been detected by any
malware analysis tool, it is not likely that the domain serves malicious activity. To verify
the correctness of our assumption, we checked if we had filtered out any domains that
were suspected to be malicious by malware analysis tools such as Anubis and Wepawet.
Furthermore, we also queried reports produced by Alexa, McAfee Site Advisor, Google
Safe Browsing and Norton Safe Web. 40 out of the 45, 000 filtered out domains (i.e., only

4http://www.alexa.com

FP7-ICT-216026-WOMBAT 31

4 EXPOSURE (Eurecom)

0.09%) were reported by these external sources to be “risky” or “shady”. We therefore
believe that our filtering policy did not miss a significant number of malicious domains
because of the pre-filtering we performed during the offline experiments.

4.3.2 Experiments with the Offline Data Set

During the two and a half month offline experimental period, we recorded and then
analyzed 4.8 million distinct domain names that were queried by real Internet users.
Note that a domain that only receives a few requests cannot produce a time series that
can then be used for the time-based features we are analyzing. This is because a time
series analysis produces accurate results only when the sampling count is high enough.

In order to find the threshold for the minimum number of queries required for each
domain, we trained our known malicious and benign domain list with differing threshold
values. Based on these empirical results, we set the threshold to 20 queries, and excluded
the 4.5 million domains from our experiments that received less than 20 requests in the
two and a half months duration of our monitoring.

For further experiments, we then focused on the remaining 300,000 domains that were
queried more than 20 times. Exposure decided that 17,686 out of the 300,000 domains
were malicious (5.9%).

4.3.3 Real-World, Real-Time Detection with Exposure

To test the feasibility and scalability of Exposure as a malicious domain detector in
real-life, we deployed it in the network of an ISP that provided us complete access to
its DNS servers for two weeks. These servers receive DNS queries from a network that
supports approximately 30,000 clients.

During the two-week experimental period, Exposure analyzed and classified 100
million DNS queries. No pre-filtering was applied. At the end of two weeks, Exposure
detected 3117 new malicious domains that were previously not known to the system
and had not been used in the training. 2821 of these domains fall into the category of
domains that are generated by a DGA and all belong to the same malicious entity. 5
out of the remaining 396 domains were reported as being malicious domains by security
companies such as Anvira, one month after we had detected them.

We cross-checked the rest of the remaining domains we had detected. All detected
domains were classified as being risky by McAfee Site Advisor 5.

After the experiments, we provided the ISP with the list of clients that were potentially
infected, or had been victims of scams.

5http://www.siteadvisor.com

32 SEVENTH FRAMEWORK PROGRAMME

4.4 Real-Time Deployment of Exposure

Figure 4.2: A screenshot of daily malicious domains list reported by Exposure.

4.4 Real-Time Deployment of Exposure

The real-time deployment of Exposure has been running and reporting potentially ma-
licious domains it detects at http://exposure.iseclab.org since the 22nd of December,
2010. Exposure prepares its reports on a daily basis as it can be seen from Figure 4.2.
Exposure has been detected 17924 distinct malicious domains in last four months and
Figure 4.3 shows number of distinct domains detected during this period.

We believe that Exposure is a useful system that can help security experts and orga-
nizations in their fight against cyber-crime. For each malicious domain reported on the
website, we sketch its time-series graphics and produce the list of IP addresses that are
mapped to it (Figure 4.4. Moreover, we link the IP address list table with FIRE 6 to
see whether the AS of the IP is already known for hosting/sourcing malicious activities.

6http://maliciousnetworks.org

FP7-ICT-216026-WOMBAT 33

4 EXPOSURE (Eurecom)

0
20

0
40

0
60

0
80

0

do
m

ai
n_

co
un

t

Jan Mar

Figure 4.3: Number of malicious domains detected over time.

Figure 4.4: A screenshot of an example malicious domain’s time-series table and the IP
address list mapped to it.

34 SEVENTH FRAMEWORK PROGRAMME

5 BANOMAD: BANking Oriented Malware Analysis
Droid

5.1 What is a banking trojan?

Over the last few years there has been a dramatic change in the goals and modes of oper-
ation of malicious hackers. As hackers realized the potential monetary gains associated
with Internet fraud, there has been a shift from hacking for fun (or bragging rights and
celebrity within and outside the hacker community) to hacking for profit. This shift has
been leveraged and supported by more traditional crime organizations, which eventually
realized the potential of the Internet for their endeavors.

The integration of sophisticated cyber attacks with well-established fraud mechanisms
devised by organized crime has resulted in an underground economy that trades compro-
mised hosts, personal information, and services in a way similar to legitimate economies.
This expanding underground economy makes it possible to significantly increase the
scale of the frauds carried out on the Internet and allows criminals to reach millions
of potential victims. One means that attackers are exploiting in order to achieve these
lucrative goals are banking trojans.

The term banking trojan (a.k.a bankers) is used to designate a piece of malware that
targets funds from an online bank account. Certain other financial services such as online
stock brokerage services and online payment systems (e.g. PayPal) are also considered
online banks throughout this report.

Banking trojans belong to a broader category of malware called crimeware. This
malware bucket comprises clickers, spam proxies, ransomware and any other malicious
software that bring some sort of financial gains to their developers or distributors.

5.2 How do banking trojans work?

5.2.1 Data filtering

Trojans specifically crafted to intercept banking credentials were first spotted in 2004.
Fraudsters had used malware before that, however it was mainly spam proxy backdoors

35

5 BANOMAD: BANking Oriented Malware Analysis Droid

rather than software to harvest banking passwords. In 2004 some of their malware spec-
imens started to filter out keylogging data that was not related to the banking sessions
of interest. Traditional keylogging produces a lot of data and mining it requires a lot
of effort, moreover, some banks use virtual keypads that cannot be intercepted through
simple keylogging. By filtering out as much as possible and implementing techniques
to circumvent theft protection mechanisms the cybercrooks have a higher success rate.
Typically this filtering is done based on the URLs accessed by the user, specific data
capturing procedures are applied based on whether there has been a regular expression
match or search string hit on the URL visited by the user.

So as to focus on specific banking sites the trojan typically contains, or downloads
from a mothership server, a list of filtering strings/regular expressions that it should
seek in the victim visited URLs. These filters use certain properties of a site in order to
discriminate whether it is of any interest (i.e. data should be harvested for it):

• URL: regular expression matches or simple string searches (e.g. www.banesto.com
or /cs/Satellite?appID=banesto.internet.WCBanestoes) may be performed on the
visited URLs.

• Site title: the site discrimination procedures are sometimes applied to the title
of the page being visited, this title is fixed by the <title>tag in its HTML (e.g.
Banesto Particulares).

• Site text: some trojans just read the whole HTML code of the banking site and strip
its tags, looking then for certain text patterns. For example, the Spyforms trojan
was seen seeking the following text stream in order to flag a visit to Rabobanks
site: Mensen in staat stellen om hun dromen en ambities waar te maken. Dat is
waar Rabobank Private Banking voor staat. Daarom bieden we de beste financile
diensten. En tonen we een grote betrokkenheid bij onze klanten en hun omgeving.

• HTML tag attributes related to the bank’s authentication form: In this case the
trojan will traverse the DOM of the site being visited and try to find nodes related
to authentication forms, once found, it will try to match certain attributes of the
form fields. For example, Banesto’s authentication form has a password field with
the attribute name equal to DatosCliente.passAux, this is specific enough to serve
as site discriminator.

We can think of other ways of deciding when to perform data filtering: check the IP
of the visited web server, inspect the SSL certificate returned by the it, hash or even do
some image processing on pictures found on the visited website, etc. However, none of
these suggested techniques have been seen in the wild.

36 SEVENTH FRAMEWORK PROGRAMME

5.2 How do banking trojans work?

Figure 5.1: Portion of Sinowal/Mebroot decrypted entity monitoring configuration file

5.2.2 Entity monitoring

At this point we know that banking trojans only capture interesting data from banking
activity. This means that the trojan has to know when the user is banking online. In
other words, the trojan needs a means to be able to access the URL or URL properties
previously described, a means to monitor what the browser is doing and where it is
going.

The following techniques have been used by attackers so as to determine where the
user is surfing:

• Hooking. Hooking of a function means the interception of any call to it. When
a hooked function should be executed, control is delegated to a different location,
where customized code resides: the hook or hook function. The hook can then
perform its own operations and later transfer control back to the original function
or prevent its execution completely. By hooking Windows API functions such
as InternetOpenUrl in WinINet.dll a trojan can, in addition to other operations,
inspect its parameters, among which we find in LPCTSTR lpszUrl, which is a
pointer to a null-terminated string variable that specifies the URL to begin reading.
In other words, the trojan is acquainted with the URL being visited by the user.

• BHO (Browser Helper Object). This is a DLL module designed as a plugin for
Microsoft’s Internet Explorer web browser to provide added functionality (e.g.
PDF rendering within the browser). The BHO API exposes hooks that allow the
plugin to access the Document Object Model (DOM) of the current page and
to control navigation. Because BHOs have unrestricted access to the Internet
Explorer event model, some forms of malware have also been created as BHOs.
For example, by using the DWebBrowserEvents2::BeforeNavigate2 event a BHO
can learn the URL that the user is heading to.

FP7-ICT-216026-WOMBAT 37

5 BANOMAD: BANking Oriented Malware Analysis Droid

• Window Title Enumeration. As stated in the Data Filtering subsection, some
trojans apply patterns to the title of a given site rather than its URL. The title
of a site can be easily accessed by BHOs or by reading the content of the server
response through API hooking, however, there is yet another trivial way of doing
so. Site titles are used to fix the title of the active browser window (e.g. Banesto
Particulares — Windows Internet Explorer), and the titles of open windows can
be easily searched through with the FindWindow() function from user32.dll or
other similar legitimate Windows APIs. Of course, trojans rarely call Windows
API functions directly, instead they make use of higher level language libraries
that perform these calls.

• DDE. Dynamic Data Exchange is a technology for communication between multi-
ple applications under Microsoft Windows or OS/2. The primary function of DDE
is to allow Windows applications to share data. For example, a cell in Microsoft
Excel could be linked to a value in another application and when the value changes,
it would be automatically updated in the Excel spreadsheet. In the same manner
a trojan can trigger certain actions based on Internet Explorer’s data sharing via
DDE . For example, through the WWW RegisterURLecho interface an application
can be informed about the URL visited by the user.

• COM (Component Object Model)/OLE (Obect Linking and Embedding) interfaces.
This is a Microsoft centric interface standard for software componentry. It is used
to enable interprocess communication and dynamic object creation in any pro-
gramming language that supports the technology. The term COM is often used
in the software development industry as an umbrella term that encompasses the
OLE, OLE Automation, ActiveX, COM+ and DCOM technologies. Using these
interfaces a third party process can, for example, query Internet Explorer and ask
it what page it is displaying. As an example, the IWebBrowser2 interface exposes
methods that are implemented by the WebBrowser control (Microsoft ActiveX
control) or implemented by an instance of the Internet Explorer application (OLE
Automation). Among its properties we find the IwebBrowser2::LocationURL, that
allows the querying entity to know the URL being visited.

• Firefox/Chrome/Opera/etc. extensions. This would be the equivalent of a Browser
Helper Object for the rest of web browsers. The difference lies in that other web
browsers base their extension model in traditional web technologies: HTML, CSS,
JavaScript, XML, etc. As with BHOs, these extensions have unrestricted access to
the DOM of the visited sites and may register JavaScript routines to attend browser
events. Hence, it is trivial to build an onPageLoad callback that queries the docu-

38 SEVENTH FRAMEWORK PROGRAMME

5.2 How do banking trojans work?

Figure 5.2: Malicious proxy installer trojan

ment.location.href property (or more specifically event.originalTarget.location.href)
in order to discover the URL being visited by the victim.

• LSP (Layered Service Provider). Layered Service Provider (LSP) is a feature of the
Microsoft Windows Winsock 2 Service Provider Interface (SPI). A Layered Service
Provider is a DLL that uses Winsock APIs to insert itself into the TCP/IP stack.
Once in the stack, a Layered Service Provider can intercept and modify inbound
and outbound Internet traffic. It allows processing all the TCP/IP traffic taking
place between the Internet and the applications that are accessing the Internet
(such as a web browser, the email client, etc).

• Inspection at intermediate network node. Some trojans simply configure an HTTP(S)
proxy in the victim’s machine so as to redirect their web activity to a malicious
node. This proxy can easily access the host HTTP header field in order to decide
whether the visited site is of any interest.

Once again, other techniques can be thought off, for example, network traffic inspec-
tion through libpcap (or any similar library) in order to access the visited URL by
looking at the HTTP requests (of course, this requires sites not using SSL or some other
means to forcing this to happen).

FP7-ICT-216026-WOMBAT 39

5 BANOMAD: BANking Oriented Malware Analysis Droid

Note that all of the previous techniques not only allow the trojan to be acquainted
with browsing activity of the user, but they also allow it to read and modify the HTML
being rendered by the browser. This feature proofs itself very useful for some methods
described in the following subsection.

5.2.3 Data Harvesting

Once the trojan knows that the user is accessing a banking site, it tries to capture the
user’s credentials or his authenticated banking session. Manual reverse engineering of
a large amount of banking trojans received at VirusTotal has revealed the use of the
following techniques to achieve such purpose:

• Keylogging. This is a functionality shown by the well known traditional keyloggers,
the goal of these specimens is stealing passwords, instant messaging conversations,
electronic mails, etc. Banking trojans have combined this technique with methods
for entity monitoring in order to filter out non-interesting information and capture
all keys pressed while visiting certain financial organizations. It is not a very effi-
cient method since most banks have certain credentials that must be introduced via
alternative methods to the keyboard (e.g. virtual keypad). Additionally, if a user
makes a mistake when inserting his data and rewrites the password, the trojan will
capture the whole brute data typed and credential identification will be difficult.
Having said this, it is normally used in combination with other stealing procedures,
hence, the overall outcome may be considered a high risk. Traditional keylogging
can be implemented using something as simple as the Windows GetAsyncState
API function.

• Form grabbing. Generic keylogging is not a good idea when capturing banking
credentials. If a specimen logs every single key pressed without applying any
filtering, the attacker will find himself with a set of senseless data. This is why
banking malware mostly use form grabbing. After all, data of sensitive nature is
eventually introduced into a form. The advantage of this method is that it filters
and structures the data captured while the credential theft is still prior to the
encryption that is usually performed when sending the login information to the
legitimate server, hence, passwords can be captured as plain text. Form Grabbing
is trivial using browser extensions for example, unrestricted access to the DOM of
a given site allows the attacker to query the value attribute of form input fields,
this is where credentials are typed in. Figure 5.3 shows an example of a credential
theft by a specimen making use of this technique.

40 SEVENTH FRAMEWORK PROGRAMME

5.2 How do banking trojans work?

Figure 5.3: Credential theft by form grabber (Mebroot/Sinowal)

• Screenshots and video capture. As already mentioned, many electronic banking
login pages include virtual keyboards with the aim of avoiding credential keylogging
and form grabbing (if virtual keyboard data is pertinently obfuscated before fixing
a given form input field). In order to circumvent this security layer malware authors
have adopted techniques related to screen capturing. What these samples normally
do is produce screenshots each time a mouse click is detected when visiting a
specific page. Since sending full screenshots to the attacker could generate an
important network load, usually these specimens only capture a limited size area
around the click position. Some banks are aware of this menace and have decided to
implement countermeasures such as swapping digits for asterisks whenever a mouse
click is performed. In order to combat this, malware developers have adopted other
methods of credential theft such as recording a video of the authentication process.
Figure 5.4 shows an example of a credential theft by a specimen making use of
delimited area screenshots combined with keylogging.

• Pharming. This technique consists in faking the DNS resolution of certain domains
in order to redirect victims to fraudulent pages which are identical to those of their
bank. In these cases the SSL certificate (if HTTPS is indeed used) of the page is

FP7-ICT-216026-WOMBAT 41

5 BANOMAD: BANking Oriented Malware Analysis Droid

Figure 5.4: Combination of keylogging and delimeted area screenshots (MDCoco)

not the one of the legitimate entity. This can be summarized as follows. Whenever
a user writes an address in his web browser it must be converted to an IP address.
This process is called name resolution and DNS servers are responsible for it.
These servers store tables linking domain names to IP addresses. The idea behind
pharming is forcing the resolution of the domain name of a banking site to a non-
legitimate IP address. The server responding at the non-legitimate IP will display
a fake page identical to that of the entity and any data inserted into it will be
captured. Every computer has a file that stores a small table of domain names
and IP addresses, this is done to avoid DNS queries for particular domain names.
The least sophisticated Trojans simply change this file so as to perform pharming,
nonetheless, there are other more advanced methods to do so such as exploiting
the victim’s router or DNS cache poisoning.

• Man-in-the-middle (MITM) attacks. The 17th August 2007 Trend Micro spotted
a trojan making use of ARP poisoning in order to launch MITM attacks in a
local network1 so as to target non-compromised computers in such network. This
technique is very powerful since compromising one unique host inside a corporate
network will mean compromising the electronic transactions of all hosts inside the
organization. The attack scenario requires a host compromised by a trojan making
use of some network packet manipulation library such as WinPcap in order to craft
the pertinent poisoning packets.

• Session cookie theft. A cookie, also known as a web cookie, browser cookie, and
HTTP cookie, is a piece of text stored on a user’s computer by their web browser.
A cookie can be used for authentication, storing site preferences, shopping cart

1Man-In-The-Middle Attack Used by Trojan. http://blog.trendmicro.com/man-in-the-middle-attack-
used-by-trojan/

42 SEVENTH FRAMEWORK PROGRAMME

5.2 How do banking trojans work?

contents, the identifier for a server-based session, or anything else that can be
accomplished through storing text data. Most web sites use cookies as the only
identifiers for user sessions, because other methods of identifying web users have
limitations and vulnerabilities. If a web site uses cookies as session identifiers,
attackers can impersonate users’ requests by stealing a full set of victims’ cookies.
From the web server’s point of view, a request from an attacker has the same
authentication as the victim’s requests; thus the request is performed on behalf of
the victim’s session. Cookie theft by trojans can be as trivial as reading a given
file from disk. However, even though this task can be accomplished very easily, it
is of little use since it does not allow interception of advanced banking credentials
required to authorize money transfers.

• Social engineering to infect secondary factor authentication device. Due to all of
the previous attacks, many banks have moved towards a two factor authentication
strategy where a transaction dependent SMS is sent to the user’s mobile phone
whenever he is going to perform a transfer. This approach drastically undermines
the effectiveness of the previous techniques since the SMS contains not only a
transaction dependent code, but also the target account, hence, the victim must
deliberately ignore this SMS field so as to be deceived by the fraudster. With the
rise of smartphones, in order to overcome this security mechanism attackers have
made use of social engineering combined with HTML injections. Whenever a user
logs into his account he is informed that there is a new protection measure that
requires him to install a security certificate (or any other similar excuse) in his
phone. The installed component is simply a phone trojan that will automatically
forward banking SMSs to the attacker, this allows him to order transactions on
behalf of the victim and then retrieve the transaction code required to validate the
operation.

5.2.4 Data forwarding

Sooner or later the stolen data must be sent to the attacker so that he can perform
the robbery (if this is not directly managed by the trojan itself). Analysis of samples
received at VirusTotal has revealed the following data sending mechanisms:

• HTTP(S) POST/GET requests to a mothership server.

• FTP upload to a credential storage.

• Use of SMTP to send emails with the stolen credentials.

FP7-ICT-216026-WOMBAT 43

5 BANOMAD: BANking Oriented Malware Analysis Droid

• Direct database (MySQL) connections executing data insertion statements (IN-
SERT/UPDATE).

• IRC connections depositing thefts as conversations in particular channels whose
activity is being logged by the attacker.

In making use of these techniques the stolen data very often travels in a cyphered/ob-
fuscated fashion, probably to make dynamic analysis of the samples more difficult and
to prevent system administrators from easily noticing anomalous behaviour.

The vast majority of the studied specimens use HTTP(S) requests, the reason being
that there are far less chances of this type of communication being blocked by firewalls.

Many other techniques are available to attackers, for example, the attacker could use
simple DNS resolutions where the theft travels encoded as a base64 string built as a
subdomain of a malicious domain. The authoritative name server for this domain would
then log those requests and in doing so it would be receiving the stolen credentials.

Stealthier (from the takedown point of view) and more resilient techniques that do
not make use of a centralized data gathering point have been much discussed. One such
example are P2P botnets. While P2P has indeed been used by malware in the past,
the most famous case being the Waledac botnet, it has not gained momentum among
banking trojans, probably because of the fear of firewalls hindering the thefts.

Having said this, very often the trivial solution is not sending the stolen credentials
at all, simply storing them locally and using them to perform transaction orders using
the victim’s machine. This approach has several advantages for the attacker, the main
ones being that it is more difficult to track him down and that the takedown of the C&C
server may not end the unauthorized transfers (provided the trojan already has a list of
target accounts to which the transfers should be made).

Additionally, many banks perform server-side data and metadata correlation in order
to try to determine whether a given transfer is potentially fraudulent (by looking at the
IP requesting the transfer for example). Trojans that use the victim machine to make
the orders may easily circumvent some of these correlation mechanisms.

5.2.5 Money theft

Many of the credential interception mechanisms discussed above send the stolen data to
a server managed by the attacker. The attacker can then log into the online bank and
place a transaction to send money to an account belonging to himself or more likely to
a hired money mule.

Other stealthier and less easily tracked means of performing robberies have also been
seen in the wild. Certain e-crime groups using trojans that perform fraudulent form

44 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

field injections will also ask for the credit card and CVV of the victim. After the data
robbery, rather than logging into the victim’s account and ordering a transaction to a
money mule account, the gangs will log into an online casino of their property and bet
money using the victims credit card. The gangs will bet with the aim of losing always,
this allows the money to be directly retrieved from the online casinos’ profit without any
need of money mules.

Hal Cash2 , Western Union or other similar services further improve the ease of thefts.
Hal Cash is a service that allows one to send money to be withdrawn from an ATM
without the need of a credit or debit card, just with a transaction code that can be sent
via SMS. Many banks have started to introduce Hal Cash or similar services and ecrime
gangs have found out that it is an ideal means for performing fraud since the money
mule is once again not needed. The unique disadvantage lies in the fact that the amount
of money that can be transferred via this method is limited.

What are the consequences for the customer of an online bank if money is stolen from
his account? He might get his lost money back from the bank, this is the unspoken
convention in Spain for example. However, even in this best case scenario for the user,
he can lose a lot of personal data as well and that loss cannot be undone. Therefore,
this kind of online crime is a very concrete threat to all computer users.

Nowadays online banking is the norm. This is good for the banks because it reduces
costs. However, this also means that not all online banking users are early adopters
any more, in other words, many online banking users are not very computer savvy.
The people who are at the greatest risk of getting infected by a banking trojan are
also the people who will have the biggest problems learning how to use multi-factor
authentication and will not be suspicious of many of the discussed fraud schemes.

Banks are aware of this panorama and have been demanding antimalware and security
companies new services to track these banking trojans, take down their infrastructure
and provide detailed reports on their inner workings so as to gather intelligence on the
enemy.

5.3 BANOMAD: VirusTotal based early warning system for
banking trojan and targeted attacks

Years of manual reverse engineering of banking trojans by Hispasec’s antifraud team
has allowed us to learn and describe how these specimens get to fulfill their purpose.
Manual analysis of malware is rather difficult, not only because it requires advanced

2Hal-Cash. http://www.halcash.us/

FP7-ICT-216026-WOMBAT 45

5 BANOMAD: BANking Oriented Malware Analysis Droid

reverse engineering notions and very often malware uses code-obfuscation techniques
like compression, encryption of self-modification but also because it does not scale and
it is slow.

How can we fight this threat then? Fraud prevention requires automation, BANOMAD
(BANking Oriented Malware Analysis Droid) is multi-modular setup that acts as an early
warning system by automating the analysis process of known (previously studied) banker
families received at VirusTotal. The idea is that we can run collections of malware in
a test system that will discriminate banking trojans and automatically produce reports
with the information of interest demanded by banks in order to combat this threat.

5.3.1 Keystone hypothesis

Banking trojans are generated with creation kits for dummies (builders) or as recompila-
tions of some original source code changing exclusively monitoring strings and dropzone
information, this is the keystone around which BANOMAD has been built. Figure 5.5
shows the builder for the SpyEye banker family.

Just as in the field of economy, return on investment (ROI) governs many of the
decisions and approaches taken by attackers. When a malware coder develops a banking
trojan he is investing time and knowledge into a project and he is interested in making
the most out of it. This behaviour has given rise to the concept of banker families,
hundreds/thousands of variants of a same source code where only certain parameters
like the attacked banks or the data gathering infrastructure changes.

This working hypothesis - that attackers will reuse their code in many different attacks
- allows us to adopt a template based approach when studying bankers. The hypothesis
suggests that rather than having thousands of completely different specimens perpetrat-
ing the attacks, there is a limited amount of behavioural patterns giving rise to thousands
of unique binaries. The idea is that these differentiated behavioural patterns can be eas-
ily spotted and clustered so as to perform in depth automated study of binaries with
family analysis templates.

5.3.2 Functional blocks

BANOMAD processes all files received at VirusTotal. Let us remind the reader that
VirusTotal submissions are performed by the average PC end user as well as academic
institutions, CERTs, security companies, honeypot setups, antivirus companies, etc.
Hence, VirusTotal itself is the engine driving the early warning system – since relatively
fresh malware is sent to the online scanner, the quick response requirement can be
accomplished.

46 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

Figure 5.5: SpyEye banking trojan builder

FP7-ICT-216026-WOMBAT 47

5 BANOMAD: BANking Oriented Malware Analysis Droid

Figure 5.6: BANOMAD functional block diagram

VirusTotal’s flux is then filtered extracting exclusively executable samples. These
executable samples are fed into what we call the image dump sandbox, a setup that will
try to obtain an unpacked version of the executable.

The generated dump is then fed into a malware family classifier (YARA-BANOMAD)
based on binary signatures that spot certain bankers of interest. The bankers of interest
must have been previously identified through other means (which will be briefly discussed
later). This stage produces a feed of interesting banking trojans that should be further
analysed.

The bankers are then executed in a behavioural analysis sandbox, since the family to
which they belong has been previously identified by YARA-BANOMAD, family specific
analysis plugins can be automatically loaded by the sandbox to extract data that may
then help in deciphering configuration files, identifying malicious network communication
points, etc. Note that the data produced by the behavioural analysis sandbox allows
us to reject most of the false positives that may have been generated by the YARA-
BANOMAD family labeling.

At this point we already have quite a lot of information on the sample: its family, an
executable image dump, the file system modifications it produces, registry modifications,
process modifications (processes launched, killed, remote thread injections, etc.) and the
network activity it generates.

All this information is now fed into a plugin based correlator and dataminer that can
also have family specific plugins. This new block extracts the banks targeted by the

48 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

malware, their dropzones, configuration download points and other infrastructure that
should be taken down in order to neutralize the data theft performed by the trojan.

Now that all pieces of the puzzle are available, the information is inputted into a
report generator that produces a normalized (XML) writeup that can be easily parsed
and styled by the entities receiving the information in order to take any actions they
consider necessary. Note that the template based approach allows this report to be far
more verbose than other similar setups since the generator can load in depth standard
descriptions produced through prior manual reverse engineering of one family variant.

5.3.3 Image dump sandbox

Overview. This sandbox consists of several VirtualBox instances running an English
Windows XP SP2 installation restricted through the use of a driver. The main purpose
of this driver is to allow a malware process to be executed in a native environment
for unpacking/image dump purposes without the risk of the malware process doing
anything malicious, i.e. interacting with files, registry, processes (including spawning
new processes), the system (like rebooting or logging of a user), security settings, driver
loading, and similar. The driver creates an image dump from kernel mode at process
exit.

The main characteristic of this BANOMAD block is speed, samples are just executed
during 3 seconds, if after this time the sample did not unpack itself into memory, the
image dump will be of little use provided the executable was indeed packed. Additionally,
the sandboxing restrictions mean that no virtual machine reverts are necessary, further
increasing execution throughput. Both of these features allow the whole flux of PE
samples received at VirusTotal to be executed regardless of whether they were already
seen in the past.

System description. The image dump sandbox driver works by registering a CreatePro-
cess notify routine for process spawn monitoring purposes, replacing both the Kernel
and GUI syscall tables, and creating wrapper hooks around certain syscall functions.

The replacement of the Kernel and GUI syscall tables is done by duplicating the
original tables and switching the table pointers both in the exported KeServiceDescrip-
torTable, as well as in the not exported KeServiceDescriptorTableShadow (we will refer
to it as the shadow table). Thanks to this, enabling/disabling hooks requires only switch-
ing the pointers of the tables (3 pointers) instead of switching many entries in the syscall
tables themselves.

FP7-ICT-216026-WOMBAT 49

5 BANOMAD: BANking Oriented Malware Analysis Droid

Since the shadow table is not exported, it has to be found using other methods. The
sandbox driver uses a method proposed by Alexander Volynkin3 , which works by seeking
a pointer to the shadow table in the KeAddSystemServiceTable function.

Some entries in the duplicated syscall tables are replaced by wrapper functions that
perform additional security checks whenever the caller is a monitored malware process.
These functions range from very small checks that just deny access to a certain func-
tionality, to larger functions that take into account more input parameters and perform
additional validation.

Since the syscall ID numbers change between major Windows versions, the sandbox
driver also consists of a syscall name to ID mapping table.

Architecture. The image dump sandbox consists of several architectural blocks, the
ones implementing the dumping and filtering deserve a greater description.

User-to-kernel mode interaction. The before mentioned driver creates a device called
Sandbox that awaits connections from a user-land master process. The master process
is responsible for spawning malware processes. By default, all the master’s children are
monitored by the driver, and if any of them exits (this is monitored by a Create/De-
stroyProcess notify routine registered by the driver), a kernel level PE image dump is
performed. This image dump is transfered to the master process using a simple packet-
based protocol. This protocol is implemented by the user-land sandbox library.

Kernel syscall filter. The goal of this block is to provide the malware specimen with
enough working space for unpacking but not enough to harm the system in any way that
would make a virtual machine revert a must. So as to achieve this aim the kernel syscall
functions detailed Table 5.1 in are filtered.

Anyone acquainted with the Windows Kernel will rapidly see the purpose of these
filters, a thousand feet view of this would be:

• Malware launched processes are tracked.

• Generally, read-only access to the registry is allowed while write access is denied.

• Generally, read-only access to files is allowed while write access is denied.

CSRSS packet filter. The CSRSS is the Windows Subsystem support process. A
Windows process communicates with the CSRSS processes using the ApiPort port and
a set of port syscalls. The packets that are sent to the Windows Subsystem support

3Obtaining KeServiceDescriptorTableShadow address in Windows XP Kernel mode.
http://hi.baidu.com/netelife/blog/item/8058363bf55200e914cecbcb.html

50 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

Table 5.1: Kernel syscall functions filtered in the image dump sandbox

Category Functions

Process-related NtCreateProcess, NtCreateProcessEx, NtOpenProcess, Nt-
DebugActiveProcess, NtDebugActiveProcess, NtCreateDebu-
gObject, NtSuspendProcess.

Registry-related NtOpenKey, NtCreateKey, NtSaveKey, NtSaveKeyEx,
NtDeleteValueKey, NtDeleteKey, NtSetInformationKey,
NtUnloadKey, NtUnloadKeyEx, NtSetValueKey.

File-related NtOpenFile, NtCreateFile, NtLockFile, NtCreatePaging-
File, NtSetInformationFile, NtDeleteFile, NtUnlockFile,
NtSetEaFile, NtSetVolumeInformationFile.

Thread-related NtSuspendThread, NtOpenThread.
Other NtOpenEvent, NtCreateEventPair, NtOpenEventPair,

NtCreateKeyedEvent, NtReleaseKeyedEvent, NtCreate-
NamedPipeFile, NtCreateMailslotFile, NtShutdownSys-
tem, NtRequestWaitReplyPort (this function is used for
CSRSS filtering), NtRaiseHardError, NtAdjustGroupsTo-
ken, NtAdjustPrivilegesToken, NtCreateDirectoryObject,
NtCreatePort, NtCreateWaitablePort, NtCreateProfile,
NtCreateSymbolicLinkObject, NtCreateToken, NtDele-
teObjectAuditAlarm, NtOpenDirectoryObject, NtOpenOb-
jectAuditAlarm, NtOpenSymbolicLinkObject, NtPrivi-
legeObjectAuditAlarm, NtPrivilegedServiceAuditAlarm,
NtSetDebugFilterState, NtSetDefaultHardErrorPort, NtSet-
DefaultLocale, NtSetDefaultUILanguage, NtSetEvent,
NtSetHighEventPair, NtSetHighWaitLowEventPair, NtSet-
InformationDebugObject, NtSetInformationJobObject,
NtSetInformationObject, NtSetInformationToken, NtSet-
IntervalProfile, NtSetLdtEntries, NtSetLowEventPair,
NtSetLowWaitHighEventPair, NtSetQuotaInformation-
File, NtSetSecurityObject, NtSetSystemEnvironmentValue,
NtSetSystemInformation, NtSetSystemPowerState, NtSet-
SystemTime, NtSetUuidSeed, NtStartProfile, NtStopProfile,
NtSystemDebugControl

FP7-ICT-216026-WOMBAT 51

5 BANOMAD: BANking Oriented Malware Analysis Droid

process contain different function requests such as console related functionality or session
related functionality. The image dump sandbox filters the Exit/Logoff (0x30400) CSRSS
packets.

GUI syscall filter. Following the same filtering principle described for the Kernel
filters, this block filters the following calls: NtUserDestroyWindow, NtUserFindWin-
dowEx, NtUserPostMessage, NtUserQuerySendMessage, NtUserChangeDisplaySettings,
NtUserCreateWindowEx. The main goal of these actions is to prevent the malware
process from killing sandbox or crucial system processes.

Summary. In its current form, the image dump sandbox allows the malware process
to have enough working space to perform initialization and unpacking, but not enough
to cause harm to other processes or system, nor to escape the sandbox. Thanks to the
methods used, the sandbox implementation is rather short, simple, and extensible, easily
allowing for modifications to be made, both in the wrapper function list, as well as in
the wrapper functionality.

5.3.4 BANOMAD-YARA: banker family identifier

Overview. YARA4 is a tool aimed at helping malware researchers to identify and clas-
sify malware families. With YARA you can create descriptions of malware families
based on textual or binary information embedded in those families’ samples. These de-
scriptions, referred to as rules, consist of a set of strings and a Boolean expression that
determines the rule logic. Rules can be applied to files or running processes in order to
determine if it belongs to the described malware family.

An example will help in clarifying YARA’s functionality. Suppose that we have a
malware family consisting of two variants, one of them downloads a malicious file from
http://foo.com/badfile1.exe, the other downloads a file from http://bar.com/badfile2.exe,
the URLs are hardcoded in the binary. Both variants drop the download into a file
named win.exe, which also appears hardcoded in the samples. For this hypothetical
family we can create a rule like this:

rule BadBoy

{

strings:

$a = "win.exe"

$b = "http://foo.com/badfile1.exe"

$c = "http://bar.com/badfile2.exe"

4YARA-Project. http://code.google.com/p/yara-project/

52 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

condition:

$a and ($b or $c)
}

This rule instructs YARA to report as BadBoy those files or processes containing the
string win.exe and any of the two URLs.

This is just a simple example, but more complex and powerful rules can be created by
using binary strings with wild-cards, case-insensitive text strings, regular expressions,
and many other features provided by YARA.

System description. YARA can be invoked from Python scripts. The yara-python
extension is provided in order to make YARA functionality available to Python users.
Using this extension a Python infrastructure for automatic processing of the dumps
generated by the image dump sandbox has been developed (BANOMAD-YARA).

The output of the sandbox is checked against a set of banker family identification
rules. The following is an example of a rule created to identify the infamous Zeus/Zbot
family:

rule zbot : banker

{

strings:

$a = "__SYSTEM__" wide

$b = "*tanentry*"

$c = "*<option"

$d = "*<select"

$e = "*<input"

condition:

($a and $b) or ($c and $d and $e)
}

For the time being, generating these rules requires manual intervention on behalf
of a reverse engineer. This is not a problem since one of the working hypotheses of
BANOMAD as a whole is that there is a limited amount of banking trojan families
and these are generated with creation kits for dummies. Hence, once a rule has been
generated for a particular family the reverse engineer is not required to continue studying
other samples belonging to that banker category, he would only need to do so whenever
there is a version upgrade of the family that evades the rule.

As to how new banking trojan families are detected for a first manual reverse engi-
neering study, this is out of the scope of this document but some ideas are briefly pointed
out:

FP7-ICT-216026-WOMBAT 53

5 BANOMAD: BANking Oriented Malware Analysis Droid

• Making use of the behavioural analysis sandbox explained in the following section
the network traffic generated by the samples received at VirusTotal is searched
through looking for URLs accepting POST/GET parameters. These parame-
ters might be being used for information theft. Sometimes thefts will travel in
a cyphered format towards the mothership server, in these cases the entropy of
the POST/GET parameter payload can be automatically studied to produce can-
didates for reverse engineering.

• The behavioural analysis sandbox can also be used to identify system activity
that may reveal fraud-related mechanisms: modification of the local hosts file,
configuration of an HTTP(S) proxy, etc.

• Certain Portable Executable imports may reveal banker activity. For example,
samples stealing bank-related user certificates often import Windows CryptoAPI
functions. Using libraries such as pefile5 it is trivial to implement a reverse engi-
neering candidate generator.

• Another YARA ruleset with rules for identifying banking entity names is in place
flagging samples whose dumps contain potential financial organization monitoring
strings. Very often the banker strings are also cyphered/obfuscated, in order to
prevent trivial algorithms from hindering the detection, dumps are processed by a
set of decyphering/decoding routines for standard algorithms (base64-ASCII, hex-
ASCII, XOR, etc.) and the result is also subjected to the banking entities YARA
ruleset.

• Threatscope (antivirus, malware research companies, etc.) blogs are followed since
they sometimes publish information on manually detected banking trojans.

• Blackhat forums and communities are inspected with the aim of getting access to
banking trojan creation kits being sold in the underground economy.

These are only some of the approaches being used to develop the banker ruleset. Work
is in progress in order to try to automatize rule creation, not only for banker families
but for malware families as a whole.

Summary. This functional block is a keystone element of BANOMAD’s infrastructure
since it filters VirusTotal’s reception flux creating a feed of interesting samples for further

5Pefile a Python module to read and work with Portable Executable (PE) files.
http://code.google.com/p/pefile/

54 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

automatic study. Moreover, BANOMAD-YARA labels samples with their particular
family, this allows other proecessing stages (Python analysis framework) to apply family
dependent analysis criteria on the binary.

5.3.5 Behavioural analysis sandbox

Overview. This sandbox executes the malware received at VirusTotal in a controlled
environment and observes what the malware is doing. Based on these observations an
analysis report is generated. The sandbox analysis can be extended through a Python
plugin system that allows specific actions to be performed based on the nature of the
executed sample.

This tool fulfills three design criteria: automation, effectiveness, and correctness for
the Win32 family of operating systems.

Automation is achieved by performing dynamic analysis of the malware and through
the Python plugin architecture later described. Malware is analysed by executing it
within a simulated environment, which works for any type of malware in almost all
circumstances.

Effectiveness is achieved by using the technique of API hooking. Following the same
working principle that many trojans use to monitor targeted bank entities, calls to
the Windows Application Programmers’ Interface (API) are rerouted to the monitoring
software before the actual API code is called, thereby creating insight into the sequence
of system operations performed by the malware sample. API hooking ensures that all
those aspects of the malware behaviour for which the API calls are hooked are monitored.
API hooking therefore guarantees that system level behaviour (which at some point in
time must use an API call) is not overlooked unless the corresponding API call is not
hooked.

Finally, the correctness goal is fulfilled through the technique of DLL code injection.
Roughly speaking, DLL code injection allows API hooking to be implemented in a
modular and reusable way.

System description. Sandboxing is provided through KVM6 virtualization. KVM (for
Kernel-based Virtual Machine) is a full virtualization solution for Linux on x86 hardware
containing virtualization extensions (Intel VT or AMD-V). It consists of a loadable kernel
module, kvm.ko, that provides the core virtualization infrastructure and a processor
specific module, kvm-intel.ko or kvm-amd.ko.

6Kernel Based Virtual Machine. http://www.linux-kvm.org/page/Main_Page

FP7-ICT-216026-WOMBAT 55

http://www.linux-kvm.org/page/Main_Page

5 BANOMAD: BANking Oriented Malware Analysis Droid

Using KVM, one can run multiple virtual machines running unmodified Linux or
Windows images. Each virtual machine has private virtualized hardware: a network
card, disk, graphics adapter, etc. These characteristics are shared by other alternatives
such as VMWare or VirtualBox, however, KVM was chosen because:

• It is open source. Although so is VirtualBox and some versions of VMWare for
example.

• Implementing sandbox detection is more complex than doing so for VMWare,
VirtualBox or QEMU.

• Scripting KVM is easier than doing so for its alternatives.

With respect to API hooking, this is implemented with the EasyHook7 library. This
library was chosen over other alternatives such as Microsoft Detours due to the following
main reasons:

• It is by far the more stable API hooking library.

• It includes more functionality than its alternatives: deadlock protection in mul-
tithread/multicpu environments, 32 and 64 bit support, hooks may be written in
managed code (C#, IronPython, VB.Net, etc.), etc.

• It is open source (LGPL).

As to the hooks themselves, they are implemented in C# in a DLL called vtinject.
Specific information about the hooked functions is provided in the Architecture subsec-
tion.

The sandbox does not execute all samples received at VirusTotal since many of these
are not Portable Executables, are corrupt or are unpacked executable versions whose
import and relocation tables have been damaged or destroyed. So as to perform the
appropriate filtering a pyew8-centric module is used to check whether the analysis can-
didate is indeed a Portable Executable and its format is, at a first glance, suitable for
the Windows loader.

7EasyHook The reinvention of Windows API hooking. http://easyhook.codeplex.com/
8Pyew — A Python tool like radare or *iew for malware analysis. http://code.google.com/p/pyew/

56 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

Architecture. The sandbox itself consists of two applications: vtinject.exe and vtin-
jectlib.dll. The sandbox creates a suspended process of the malware application and
injects the DLL into it. At the initialization of this DLL, API hooks for all critical API
functions are installed. In addition to injecting the hooking library into the malware
process, injections are performed on the legitimate explorer.exe and svchost.exe system
processes. After this initialization phase, the malware process is resumed and executed
for a given amount of (configurable) time, usually 3 minutes. During the malware’s
execution, all hooked API calls are rerouted to the referring hook functions in the DLL.
These hook functions inspect the call parameters, and inform vtinject.exe about the API
call in the form of message queue notification objects following this format:

process_name;pid;time;sandbox;API;arg1;arg2;...;argn;return_value

vtinject.exe then outputs these messages to the standard output, where they can be
processed by other infrastructure units. The hook function may sometimes modify the
the API call result before returning to the calling malware application in order to hide
the presence of the sandbox.

Besides the monitoring, the DLL also has to ensure that whenever the malware starts
a new process or injects code into a running process, the sandbox is informed about
that. The sandbox then injects a new instance of the DLL into that newly created or
already existing process so all API calls from this process are also captured.

IPC Between Sandbox and the DLL. There is a lot of communication between the
executable and all the loaded instances of the monitoring DLL. Since the communica-
tion endpoints reside in different processes, this communication is called interprocess
communication (IPC). To implement this IPC Windows Message Queues (MSMQ) are
used. MSMQ is essentially a messaging protocol that allows applications running on
separate servers/processes to communicate in a failsafe manner. A queue is a temporary
storage location from which messages can be sent and received reliably, as and when
conditions permit. This enables communication across heterogeneous networks and be-
tween computers which may not always be connected. By contrast, sockets and other
network protocols assume that direct connections always exist.

Implementation of vtinject.exe. The work of the sandbox can be summarized into
three phases:

1. Initialization phase.

2. Execution phase.

3. Analysis phase.

FP7-ICT-216026-WOMBAT 57

5 BANOMAD: BANking Oriented Malware Analysis Droid

Table 5.2: Behavioural sandbox hooks

Library Functions

KERNEL32.DLL CreateFile, DeleteFile, CreateDirectory, RemoveDirectory,
CreateProcessInternal, ReplaceFile, MoveFileWithProgress,
SetFileAttributes.

NTDLL.DLL NTCreateThread, NTCreateMutant, NTWriteFile.
ADVAPI32.DLL RegConnectRegistry, RegCreateKey, RegDeleteKey, RegSet-

ValueEx, RegDeleteValue.
USER32.DLL SetWindowsHookEx, MessageBoxTimeout.
URLMON.DLL URLDownloadToFile.
WININET.DLL InternetOpenURL, InternetOpen, InternetConnect,

HTTPOpenRequest.

In the first phase, the sandbox initializes and sets up the malware process. It then
injects the DLL and exchanges some initial information and settings. If everything
worked well, the process of the malware is resumed, and the second phase is started.
Otherwise, the sandbox kills the newly created malware process and also terminates. The
second phase lasts as long as the malware executes, but it can be ended prematurely by
the sandbox. This happens if a timeout occurs or some critical conditions require an
instant termination of the malware. During this phase, there is a heavy communication
between vtinjectlib.dll instances in the pertinent running processes and vtinject.exe. In
the third phase, all the collected data is analyzed, and a TXT analysis report is generated
from that. The Setup output section shows an XML containing a DOM space built using
the TXT output produced by the sandbox.

What API functions are hooked? There often are multiple API functions that can be
used for the same purpose. Just as often there are layered API functions that can call
each other recursively. So it is necessary to find a minimal subset of those functions that
cover all possible execution chains. The details of the hooking choices are summarized
in Table 5.2.

Most of these functions are self-explanatory. The aim of the hooks is to trace and
monitor all relevant system calls and generate an automated, machine readable report
that describes the following:

• Which files the malware sample has created or modified.

• Which changes the malware sample pefromed on the Windows registry.

58 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

• Which dynamic link libraries (DLL) were loaded before executing.

• Which virtual memory areas were accessed.

• Which processes were created.

• Which network connections were opened and what information was sent over such
connections.

This last point is fulfilled in combination with network traffic capturing outside the
guest operating system (performed by KVM itself).

Rootkit functionality. Since the malware sample should not be aware of the fact that
it is executed inside of a controlled environment, vtinject.dll implements some rootkit
functionality. All system objects that belong to the sandbox are hidden from the malware
binary. These are processes, modules, files, registry entries, mutexes events, and handles
in general. This at least makes it much harder for the malware sample to detect the
presence of the sandbox.

Summary. With the help of the behavioural analysis sandbox we are able to automat-
ically generate a report of the behaiour of a given malware binary. We can observe how
a malware process interferes with the rest of the system. Compared with manual code
analysis reports, the sandbox reports all the important actions, but some small details
and behaviour variants (e.g. creating certain event objects) are not detected. This is
because the corresponding API calls are not hooked in the current implementation. Hav-
ing said this, there is no need to extend the hooks to detect these differences since the
present setup gives all the information that is of interest for bank CERTs. Note that the
whole of BANOMAD has been built taking into account the demands of several financial
organizations which are clients of Hispasec.

5.3.6 Python analysis framework

Overview. For the sake of brevity, the previous description of the behavioural sandbox
has omitted a key feature of its architecture. The family dependent analysis plugins.
The sandbox has three plugin injectable execution points:

1. Pre-execution: executes a piece of code before the execution of the sample under
analysis.

2. In-execution: executes a piece of code while the malware is under execution.

FP7-ICT-216026-WOMBAT 59

5 BANOMAD: BANking Oriented Malware Analysis Droid

3. Post-execution: executes a piece of code before the sandbox virtual machine is
reverted to a clean state, just after the analysis has ended or timed out.

In addition to these plugin injection points there is an independent analysis framework
that is in charge of grouping the information provided by the rest of the BANOMAD
blocks so as to gather the pertinent intelligence and extract the data that will build the
analysis reports.

System description. The final goal of this architectural piece is to identify the entities
targeted by the trojan, its data dropzone(s) and any additional malicious communication
points. Some of this information will be easily accessible through direct parsing of the
dumps generated by the image dump sandbox, however, the more advanced trojans will
implement rootkit techniques, cyphering, C&C communication and other mechanisms
that make the dump of little use.

In such cases there is a need to access the sample execution information and even
interact with the sample and its actions if required. Moreover, sometimes the fraud-
related activity of the malware must be triggered. For example, the FlashFaker banker
family displays a Windows error message just after execution, unless the OK button is
clicked by the user, the malware does not continue with its normal execution. Hence,
there is a need to interact via Windows messages with the sample in order to emulate
the end user actions (clicking in the OK button), this is done via an in-execution python
plugin.

Architecture. As already described, this framework is divided into the behavioural
sandbox plugins and the analysis scripts that are fed by the data generated by the rest
of the BANOMAD subsystems.

The sandbox plugins are simply python modules or module bundles that implement
a given set of (pre-execution, in-execution, post-execution) functions expected by the
behavioural sandbox’s main executable. Not all families will require routines for each of
these code injectable points, some families don’t even require plugins at all.

Pre-execution routines. These routines set up the environment required by the mal-
ware sample for a correct execution. For example, some families will require some specific
non-standard OCX or DLL files that can be copied into the machine by pre-execution
routines. Other families may require the sample to be named in a specific way, renaming
can also be performed by the pre-execution routines.

In-execution routines. We have already mentioned one of the uses of these routines,
clicking on dialogs displayed by the malware that prevent further execution of the sam-
ple. Other responsibilities of these routines may be simulating browsing activity using

60 SEVENTH FRAMEWORK PROGRAMME

5.3 BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks

Python’s PAMIE library9 . For example, executables installing BHO’s will require In-
ternet Explorer to be launched after the installation so as to record the communication
with the trojan’s mothership server since the malicious actions are performed by the
BHO DLL executing in the context of Internet Explorer.

Post-execution routines. Certain banker families use rootkit techniques or multi-modular
approaches that require some sort of interaction prior to the virtual machine revert in
order to retrieve all the pieces of information required to extract the necessary data for
building the final sample reports. For example, Zbot executables downlaod a cyphered
configuration file that contains bank monitoring strings, this file is hidden using rootkit
techniques. Additionally, the encryption of this configuration file is infection depen-
dent, hence, before reverting the virtual machine the file should be decyphered by a
post-execution routine and the targets should be reported to BANOMAD.

As to the other key element of the susbsystem, the plugin based correlator & data
miner. It is just a set of family focused python scripts that act on all the data produced
by BANOMAD in order to extract the information that builds the final banker reports.
These scripts may range from something as simple as applying regular expressions to
the sample’s image dump up to applying complex logic to the network traffic generated
by the executable or deciphering registry key values stored by it. Additionally, the
scripts use the Wombat APIs (WAPI) of the other Wombat partners in order to include
additional information about artifacts mentioned in the report. For example, all spotted
HTTP communication points are queried against Honeyspider’s dataset in order to see if
those sites have also been seen as distribution points (via drive-by-downloads or browser
exploits) for the reported family or any other malware file.

Summary. The block hereby described groups the elements labeled as family analysis
plugins and plugin based correlator & data miner in the functional block diagram at the
beginning of this section. The setup interacts with the behavioural analysis sandbox
and receives the information collected at all prior BANOMAD stages in order to extract
information of interest so as to further understand the specific family variant and identify
any infrastructure that should be taken down in order to neutralize or mitigate the data
thefts produced by the trojan.

9Python Automation Module for I.E. http://pamie.sourceforge.net/

FP7-ICT-216026-WOMBAT 61

5 BANOMAD: BANking Oriented Malware Analysis Droid

5.3.7 Report generator

The report generator simply formats all of the information previously extracted into an
easily parseable XML report. The XMLs are generated with webpy templetor10 tem-
plates. The only detail worth mentioning of this setup is that the templates contain
family specific descriptions that extend the information produced by the rest of the
BANOMAD setup. These descriptions have been written after manual reverse engi-
neering of some variants of each family and after tracking the cybercrooks behind the
samples in underground forums, irc channels etc. The descriptions are thus common to
all trojans belonging to a given family.

5.4 Setup output

As already stated, the final BANOMAD output is an XML report that may be used
by the service receiver to set up a fraud tracking web portal, develop a dropzone take
down system, implement a server side malicious BHO CLSID inspector to deny access
to electronic banking private spaces, etc.

The following is a summarized version of a report generated for a sample belonging
to the infamous Zeus/Zbot banker family.
<?xml version=”1.0” encoding=”UTF−8”?>
<!DOCTYPETARGETEDATTACKREPORTSYSTEM ”fullfeed−1.5.dtd”>

<TARGETEDATTACKREPORT>

<REPORTMETADATA>
<REPORTID><! [CDATA[EX−20110310−124]]></REPORTID>
<REPORTDATE><! [CDATA[10/03/2011]]></REPORTDATE>
<FOCUSENTITY><! [CDATA[Wellsfargo]]></FOCUSENTITY>
<ENTITYCODE><! [CDATA[0090]]></ENTITYCODE>

</REPORTMETADATA>

<SAMPLEIDENTIFICATION>
<MD5><! [CDATA[bc4ee6e6d1348a5da94f8af23009eb27]]></MD5>
<SHA−1><! [CDATA[1f87bbcc5c3ef21a93951961ce9d3077f2636110]]></SHA−1>
<SHA−256><! [CDATA[4115287b886040991fb6b7949233f937ac0874d3b575b65f8b90ea0de1924350]]></SHA−256>

</SAMPLEIDENTIFICATION>

<PRELIMINARYSAMPLECHARACTERIZATION>
<DETECTIONDATE><! [CDATA[10/03/2011]]></DETECTIONDATE>
<SIZE><! [CDATA[89088]]></SIZE>
<FILE TYPE><! [CDATA[PE32 executable for MS Windows (GUI) Intel 80386 32−bit]]></FILE TYPE>
<PACKER><! [CDATA[None/Unknown]]></PACKER>
<LABFAMILYNAME><! [CDATA[Zeus/Zbot]]></LABFAMILYNAME>
<ENTITYMONITORINGTECHNIQUES>

<TECHNIQUE><! [CDATA[API Hooking to compare requested URLs with a l i s t of interesting entities]]></(. . .)
TECHNIQUE>

</ENTITYMONITORINGTECHNIQUES>
<DATACAPTURINGTECHNIQUES>

<TECHNIQUE><! [CDATA[Form grabbing]]></TECHNIQUE>
<TECHNIQUE><! [CDATA[Injection of fraudulent form fields]]></TECHNIQUE>
<TECHNIQUE><! [CDATA[Restricted area screenshots]]></TECHNIQUE>
<TECHNIQUE><! [CDATA[Man−in−the−middle fake sites]]></TECHNIQUE>

10Web.py templating system (codename: templetor). http://webpy.org/templetor

62 SEVENTH FRAMEWORK PROGRAMME

5.4 Setup output

<TECHNIQUE><! [CDATA[Protected Storage content harvesting]]></TECHNIQUE>
</DATACAPTURINGTECHNIQUES>
<AFFECTEDBROWSERS>

<BROWSER><! [CDATA[Internet Explorer]]></BROWSER>
<BROWSER><! [CDATA[Mozilla Firefox]]></BROWSER>
<BROWSER><! [CDATA[Google Chrome]]></BROWSER>
<BROWSER><! [CDATA[Opera]]></BROWSER>

</AFFECTEDBROWSERS>
<IMPORTEDSYMBOLS>

<LIBRARY library name=”advapi32. dll”>
<SYMBOL><! [CDATA[AddAccessDeniedAce]]></SYMBOL>
<SYMBOL><! [CDATA[AddAuditAccessAce]]></SYMBOL>
<SYMBOL><! [CDATA[AdjustTokenGroups]]></SYMBOL>

[. . . more imports . . .]

<SYMBOL><! [CDATA[TrusteeAccessToObjectW]]></SYMBOL>
</LIBRARY>

[. . . more libraries . . .]

</IMPORTEDSYMBOLS>
</PRELIMINARYSAMPLECHARACTERIZATION>

<ANTIVIRUSANALYSIS>
<AVRESULT>

<AVENGINE><! [CDATA[AhnLab−V3]]></AVENGINE>
<SIGNATURE><! [CDATA[Win−Trojan/Zbot.88576]]></SIGNATURE>

</AVRESULT>
<AVRESULT>

<AVENGINE><! [CDATA[AntiVir]]></AVENGINE>
<SIGNATURE><! [CDATA[TR/Crypt.ZPACK.Gen]]></SIGNATURE>

</AVRESULT>
<AVRESULT>

<AVENGINE><! [CDATA[Avast]]></AVENGINE>
<SIGNATURE><! [CDATA[Win32:Zbot−MYU]]></SIGNATURE>

</AVRESULT>

[. . . more antivirus results . . .]

</ANTIVIRUSANALYSIS>

<TARGETEDENTITIES>
<TARGET>

<ENTITY><! [CDATA[Banco Santander]]></ENTITY>
<MONITORINGCHAIN><! [CDATA[https://www.gruposantander . es/∗]]></MONITORINGCHAIN>

</TARGET>
<TARGET>

<ENTITY><! [CDATA[Gad eG]]></ENTITY>
<MONITORINGCHAIN><! [CDATA[https://internetbanking .gad.de/banking/∗]]></MONITORINGCHAIN>

</TARGET>
<TARGET>

<ENTITY><! [CDATA[Citibank]]></ENTITY>
<MONITORINGCHAIN><! [CDATA[https://www. citibank .de/∗/jba/mp#/SubmitRecap.do]]></MONITORINGCHAIN>

</TARGET>

[. . . more targets . . .]

</TARGETEDENTITIES>

<COMMUNICATIONPOINTCATEGORY=”OTHER” STATUS=”FUNCTIONAL”>
<DESCRIPTION><! [CDATA[<p>This request downloads the trojan ’ s configuration f i l e . The f i l e is encrypted.</p>(. . .)

]]></DESCRIPTION>
<NETWORKTRAFFIC>

<HTTPMETHOD=”GET”>
<PACKET>

<DESTINATION IP><! [CDATA[208.101.9.140]]></DESTINATION IP>
<DESTINATIONPORT><! [CDATA[80]]></DESTINATIONPORT>

</PACKET>
<DESTINATIONHOST><! [CDATA[televisionfree . co . tv]]></DESTINATIONHOST>
<PATH><! [CDATA[/maknyus/cfg .bin]]></PATH>

</HTTP>

FP7-ICT-216026-WOMBAT 63

5 BANOMAD: BANking Oriented Malware Analysis Droid

</NETWORKTRAFFIC>
<SITECHARACTER><! [CDATA[Specifically created , wholly bad]]></SITECHARACTER>

</COMMUNICATIONPOINT>

<COMMUNICATIONPOINTCATEGORY=”DROPSITE” STATUS=”FUNCTIONAL”>
<DESCRIPTION><! [CDATA[<p>This request sends the stolen data in a cyphered fashion.</p>]]></DESCRIPTION>
<NETWORKTRAFFIC>

<HTTPMETHOD=”POST”>
<PACKET>

<DESTINATION IP><! [CDATA[208.101.9.140]]></DESTINATION IP>
<DESTINATIONPORT><! [CDATA[80]]></DESTINATIONPORT>

</PACKET>
<DESTINATIONHOST><! [CDATA[televisionfree . co . tv]]></DESTINATIONHOST>
<PATH><! [CDATA[/maknyus/gate .php]]></PATH>

</HTTP>
</NETWORKTRAFFIC>
<SITECHARACTER><! [CDATA[Specifically created , wholly bad]]></SITECHARACTER>

</COMMUNICATIONPOINT>

<SYSTEMMODIFICATIONS>
<EVENTMONITOR=”PROCESS” TYPE=”CREATED”>

<CAUSATOR><! [CDATA[C:\WINDOWS\explorer . exe]]></CAUSATOR>
<FULLYQUALIFYINGNAME><! [CDATA[C:\Documents and Settings\john doe\Escritorio\sample. exe]]></(. . .)

FULLYQUALIFYINGNAME>
</EVENT>
<EVENTMONITOR=”REGISTRY” TYPE=”SETVALUEKEY”>

<CAUSATOR><! [CDATA[C:\Documents and Settings\john doe\Escritorio\sample. exe]]></CAUSATOR>
<FULLYQUALIFYINGNAME><! [CDATA[HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\userinit]]></(. . .)

FULLYQUALIFYINGNAME>
</EVENT>
<EVENTMONITOR=”FILE” TYPE=”WRITE”>

<CAUSATOR><! [CDATA[C:\Documents and Settings\john doe\Escritorio\sample. exe]]></CAUSATOR>
<FULLYQUALIFYINGNAME><! [CDATA[C:\WINDOWS\system32\sdra64 . exe]]></FULLYQUALIFYINGNAME>

</EVENT>
<EVENTMONITOR=”FILE” TYPE=”WRITE”>

<CAUSATOR><! [CDATA[C:\WINDOWS\system32\services . exe]]></CAUSATOR>
<FULLYQUALIFYINGNAME><! [CDATA[C:\WINDOWS\system32\lowsec\user .ds]]></FULLYQUALIFYINGNAME>

</EVENT>
<EVENTMONITOR=”FILE” TYPE=”WRITE”>

<CAUSATOR><! [CDATA[C:\WINDOWS\system32\svchost . exe]]></CAUSATOR>
<FULLYQUALIFYINGNAME><! [CDATA[C:\WINDOWS\system32\lowsec\local .ds]]></FULLYQUALIFYINGNAME>

</EVENT>
</SYSTEMMODIFICATIONS>

<DETAIL>
<DESCRIPTION><! [CDATA[Detailed family description template product of manual reverse engineering .]]></(. . .)

DESCRIPTION>
<STOLENINFORMATION>

<DESCRIPTION><! [CDATA[Description about any data theft that follows]]></DESCRIPTION>
<INTERESTINGDATAPACKET>

<DESCRIPTION><! [CDATA[Interception of in it ia l authentication form]]></DESCRIPTION>
<DATATYPE=”DECRYPTED”><! [CDATA[Template data theft example for family and focus entity]]></DATA>

</INTERESTINGDATAPACKET>
</STOLENINFORMATION>

</DETAIL>

</TARGETEDATTACKREPORT>

Note that this report provides enough information so as to build other antimalware
related setups. For example, a feed of reports of this nature can proof itself extremely
useful in fraud related forensics investigations.

Very often bank CSIRT teams need to carry out an examination of the machines of
customers that have been victims of fraud. If these teams were to build a database
of registry keys, launched processes, created files, etc. reported in these XMLs they
would have a means of automatically identifying the robbery culprit. Hispasec has been

64 SEVENTH FRAMEWORK PROGRAMME

5.5 Experimental results

Table 5.3: Volume of unique binary variants analysed for BANOMAD family

Family Number of unique samples

Tanatos/Bugbear 49554
Delephant 34341
Zeus/Zbot 12059
SpyEye 5600
Sinowal/Torpig 4351
Goldun 2567
Multibanker 1020
Ambler/Limbo/Nethell 445
MDCOCO 264
FakeFlasher 96

following this approach as an early stage step in forensic investigations and it has had a
very high success rate.

5.5 Experimental results

BANOMAD has been running in a stable fashion since September 2010, acting on Virus-
Total’s malware feed. At present plugins for automated analysis of 10 banker families
have been written and more are on the way. The setup has been giving service both to
Spanish and Latin American banks and important USA and other international secu-
rity/telco companies that resell the reports to some of the largest world wide financial
entities.

This section includes a summary of the findings worth mentioning after 6 months of
nonstop execution.

Family sizes. Regarding the 10 banker families that have been surveyed during these six
months, Table 5.3 shows the volume of unique binary variants (different hash) analysed.

A simple glance at these statistics may lead the reader to conclude that the Tanatos/Bug-
bear family is the most intense, this is not really true. This family is a very old pseudo-
banker (2003) that autoreplicates via email and shares, each replication producing a new
polymorphic variant of exactly the same piece of original code (dropzones included).
The high numbers are due to this polymorphic engine and propagation technique, since

FP7-ICT-216026-WOMBAT 65

5 BANOMAD: BANking Oriented Malware Analysis Droid

VirusTotal is used by many honeypot infrastructures the volumes are biased by their
submissions.

One would expect the infamous Zeus/Zbot family to be the most predominant since
its builder is by far the most sold one and the most distributed in underground forums.
Moreover, the Zeus/Zbot family implements a server side metamorphic/polymorphic
engine that further accentuates its numbers. Indeed, the cybercrooks behind Zbot have
implemented automated scanning of their specimens, whenever a variant starts to have a
high detection rate among the antivirus industry, the polymorphic/metamorphic server
side engine generates a new fully undetectable strain and an update order is sent to the
the already infected machines. This new strain is also used in the malware dissemination
infrastructure in place (browser exploits, drive-by-downloads, spam emails, etc.).

While all of these reasons do acquaint for the Zeus/Zbot family being the third largest
collection, it is still behind the Delephants. Delephants belong to the Brazilian commu-
nity of malware developers. They are malicious executables developed in Delphi that
use Delphi form overlapping to retrieve banking credentials (including two factor au-
thentication mechanisms). Our investigations have led us to conclude that rather than
having one unique developer or group of developers behind this set, they are developed
and distributed by many different individuals making use of similar techniques. This is
probably the reason for it being the second largest set, the long queue economic theory
proofs itself to be true and less variants by a far larger developer community accounts
for a higher overall family size.

Having made this brief analysis, we must emphasize the fact that the interaction of the
security community with these specimens and their infrastructures is strongly biasing
the sizes. For example, Zeus/Zbot analyses are easy to automate and many companies
are providing takedowns of their dropzones as a service to financial entities. When the
trojans’ infrastructures are closed attackers are forced to release new variants making
use of other dropzones, hence, the number of variants of the family seen in the wild is
noticeably increased.

Targeted entities. If we focus on the 5 largest collections, we see that attackers are
mainly interested in attacking as many entities as possible with each unique binary.

This makes sense, whenever an end-user gets infected they do not really know what
their bank is and they must increase the chances of intercepting their credentials by
targeting the largest possible number of entities, with the hope that the victim’s bank
will lie among them.

The exception to this rule are Delephants, each binary targets, on average, only 7
financial institutions. The reason behind this lies in the distribution vector being used

66 SEVENTH FRAMEWORK PROGRAMME

5.5 Experimental results

Figure 5.7: Average number of entities targeted by each binary belonging to the TOP5
families studied

by attackers. Let us recall that Delephants are produced mainly by brazilian attackers
and the targeted entities are nearly always brazilian banks. Delephants get distributed
via spam emails with attachments, these messages use brazilian bank-related baits (new
security token executable, etc.) written in portuguese, hence, attackers are already
filtering out their potential victim base, making it relatively useless to introduce other
targets in their creations.

Figure 5.7 shows the average number of entities targeted by each binary belonging to
the TOP5 families studied.

Data forwarding. During the period of time under consideration 23107 unique data
dropzones have been recorded. These malicious communication points range from com-
promised legitimate web sites and email accounts to genuinely registered hosts and do-
main names to accomplish ecrime.

Given the volume of different binaries observed, this number reveals that (as expected)
several samples are making use of the same communication points, the overall ratio being
nearly 5 different samples per drop zone.

FP7-ICT-216026-WOMBAT 67

5 BANOMAD: BANking Oriented Malware Analysis Droid

Figure 5.8: Popularity of the data forwarding techniques used by the tracked banker
families

68 SEVENTH FRAMEWORK PROGRAMME

5.6 Current research

The pie chart illustrates that SMTP is the predominant data forwarding technique,
with almost 60% of the drop zones being email accounts. This number is biased by the
fact that Delephant samples mostly use email accounts as their data gathering points
and Delephant is the largest family after BugBear. BugBear samples also use SMTP, yet
since they are just polymorphic variants of the same source code, they always use the
same set of reception emails and do not account for the high number of email dropzones
observed.

After email, HTTP remains by far the method mostly used. 39% of the drop zones are
web scripts receiving the data via HTTP GET/POST requests. Among those samples
using the HTTP protocol to drop the data, only 0.5% of them used HTTP over SSL
(HTTPS), this reveals that malware authors find far more interesting encrypting the
data with custom algorithms that will increase study time rather than making use of
HTTPS.

There has been a lot of fuzz regarding P2P covert channels, while malware making
use of P2P has been seen, none of it used it to forward the robbed credentials.

We expect the HTTP protocol to continue increasing and eventually become the most
popular technique. The reason for this prediction is that the mean life time of HTTP
infrastructures is lower than email ones since they are easier to take down (ethical hacking
can be used and it is easier to provide proof to abuse teams). The takedowns and the
lower life time mean that attackers must set up new data gathering points, thus increasing
the number of observed drop zones under this category. Additionally, only 10 families
are being tracked, the work of Hispasec’s antifraud team reveals that most of the families
use HTTP communication, hence, when new family analysis modules will be in place we
expect this data forwarding technique to be the most popular one.

Figure 5.8 shows the relative popularities of the data forwarding techniques used by
the tracked banker families.

5.6 Current research

At the 2007 VirusBulletin in Vienna, F-Secure publicly presented a tool for analysing
banking trojans called Mstrings. The tool was described as follows:

We studied banking trojans and ended up with the following facts:

1. Trojans must use filter strings in order to reduce the amount of data
they collect.

2. Filter strings are banking strings, typically bank URLs.

3. Malware that is not interested in banks does not include banking strings.

FP7-ICT-216026-WOMBAT 69

5 BANOMAD: BANking Oriented Malware Analysis Droid

4. Banking trojans typically encrypt or obfuscate their filter strings within
the file image, but decrypt them into memory.

This led to the idea that we could run collections of malware, running
samples in a test system and searching the memory of the system for banking
strings. If the memory contains banking strings we would collect them in a
database and analyse them for trends and other statistical purposes. The
same technique could also be used for locating banking trojans from incoming
samples in lab automation.

We created an analysis tool called ’Mstrings’ for this purpose. Mstrings
is an F-secure internal research tool that currently has the following set of
features:

• Has a database of search strings (currently contains 1,400 search strings)

• Can search through user-mode and kernel-mode memory.

• Can bypass basic forms of string encryption automatically.

• Has a whitelist of false positive strings.

• Is rather fast. With the current database, it goes through all required
areas in memory in 10-30 seconds.

While the Mstrings approach may have been very successful in 2007, most of today’s
bankers use some sort of entity monitoring strings encryption. Very often these strings
will not be decrypted into memory, instead, the visited URLs will be cyphered and then
compared with the cyphered versions of the filter strings. Hence, the Mstrings keystone
hypothesis, that the banking trojan filter strings will be found as plain text at some
point is defeated, being unable to identify the most modern crimeware samples.

Additionally, Mstrings just identifies potential banking trojans, it does not provide
any further information about the execution of the sample or its network communication
points. Having said this, Mstrings does allow the identification of new banking trojan
families since it is not template based. This is one of the reasons that led us to integrate
their approach in BANOMAD in order to identify interesting families for which templates
should be developed.

Yet another disadvantage of F-Secure’s approach in order to automatically produce
menace reports is that VirusTotal very often receives submissions of legitimate banking
related software, phishing lists, etc. that give rise to many false positives when searching
for bank strings.

70 SEVENTH FRAMEWORK PROGRAMME

5.7 Limitations

A better idea for proactively identifying and reporting banking trojans was proposed
by Florent Marceau (LEXSI) at SSTIC 200911 (Symposium sur la Scurit des Technologies
de l’Information et des Communications). LEXSI’s setup uses data tainting in order to
track the use of sensitive banking related information by the system processes. Electronic
banking behaviour is emulated in a web browser and the data inputed is tainted in order
to see if the malware sample executed makes any use of it and what exactly it is doing.
This system is far more interesting since it allows report generation for families that
have never been seen in the past. However, it also presents important limitations:

• Very often malicious behaviour will only be triggered by activity on very specific
bank sites, hence the user activity emulation should include interaction in thou-
sands of world wide banks, this can be noticeably slow.

• Since no family specific analysis plugins are provided, non-malicious network com-
munication could be erroneously reported and could lead to takedowns of innocuous
sites. E.g. many bankers perform HTTP requests to legitimate sites just to see if
they have Internet connection.

Nonetheless, once again this approach is really interesting for extending BANOMAD
in order to identify new banker families for which templates should be developed.

5.7 Limitations

The before mentioned setups are not the only ones to present limitations, these can also
be spotted at different BANOMAD architectural levels.

Malware could easily fool the image dump sandbox by delaying its unpacking routine
so as to exceed the 3 second execution threshold. Empirical experience reveals this
is extremely rare. Having said this, should this become common use, the execution
threshold can always be adjusted, sleep calls could be fooled, or time delayed packers
could be identified with YARA prior to execution and treated in a different manner
(using static unpacking for example).

At the end of the day YARA is just a signature based approach for labeling malware
samples. Hence, it is subjected to the same limitations that signature-based detection
of virus, mainly false positives and false negatives. This is particularly critical in this
setup because every so often attackers will release new versions of their trojan builders,
11Utilisation du Data Tainting pour l’analyse de logiciels malveillants.

http://actes.sstic.org/SSTIC09/Utilisation du data tainting pour lanalyse de logiciels malveillants/
SSTIC09-slides-F-Marceau-Utilisation du data tainting pour lanalyse de logiciels malveillants.ppt

FP7-ICT-216026-WOMBAT 71

5 BANOMAD: BANking Oriented Malware Analysis Droid

the binaries produced by these new versions may evade the existing YARA rules for
that specific family. So as to mitigate this problem statistics on the numbers of samples
received at VirusTotal belonging to each of the families in BANOMAD are produced.
Whenever a reception valley is spotted an investigation is carried out in order to identify
the reason and try to locate and study new versions of a given family if that was the
valley culprit.

With respect to the behavioural analysis sandbox, the main drawback is that is that
it only analyzes a single execution of the malware. Additionally, API hooking can be
bypassed by programs that directly call kernel code to avoid using the Windows API.
However, this is rather uncommon in malware, as the malware author needs to know the
target operating system, its service pack level and some other information in advance.
Execution of VirusTotal’s malware feed reveals that most banking trojans are designed
to attack a large user base and thus commonly use the Windows API.

Problems related to malware behaviour depending on mothership server orders. Very
often different entity monitoring configuration files will delivered based on the country
of origin of the victim, other times the mothership server may only order the trojan to
exhibit fraudulent behaviour exclusively under certain circumstances. Thus, the external
infrastructure dependency may strongly bias the activity seen by BANOMAD.

Since the family analysis plugins depend on the label produced by the YARA subsys-
tem, they are also subjected to its same limitations. In other words, each time there is
a new family version release a new plugin may have to coded.

Having identified all of these problems, the overall main limitation is that BANOMAD
follows a reactive approach. Banker families must have been previously identified and
manually reversed engineered in order to produce automatic analysis plugins and re-
port templates. While this is a characteristic that allows for further investigation and
automation, it is still a much better approach than static analysis of all malicious files
reported by bank customers to banks themselves or identified in fraud case forensics
investigations.

5.8 Conclusion

Throughout the past years efforts have been made to mitigate the online banking fraud
threat, these efforts have mainly focused on the server side (web server hardening, pe-
riodic pentesting, etc.) and authentication factors (two factor authentication). Little
has been done in actually trying to neutralize data theft infrastructure, i.e. performing
takedowns with the aim of mitigating the impact of banking trojans in the wild. The

72 SEVENTH FRAMEWORK PROGRAMME

5.8 Conclusion

lack of efforts in this sense may have been due to the fact that in-depth malware analysis
has always been a slow, manual task.

The truth is that the changes in the tools and tactics used by banking malware authors
and distributors have allowed traditional strong two factor authentication mechanisms
(SMS transaction dependent code) to be circumvented and clearly call for further re-
search in order to provide new approaches to eradicate online theft.

Due to the ever-increasing presence of banking related botnets on the Internet, there is
a need for automated systems aiding researchers, CERTs, and security companies/teams
in their work. Although limited, some work has indeed been done in this sense. In 2007
F-Secure presented a novel setup for automatically detecting bankers based on automated
execution of malware collections and the inspection of the infected machine’s memory
looking for bank-related strings. Later, in 2009, LEXSI approached this problem through
data tainting of credentials introduced in the browser via user emulation in order to see
if the malicious process made any use of it.

In the context of WOMBAT Hispasec has developed BANOMAD (BANking Oriented
Malware Analysis Droid), a novel combination of non-novel techniques (signature based
detection, sandboxing, templating, image dumping, etc.) that builds a banking trojan
early warning system on top of VirusTotal. The early component is provided through
automation and thanks to the fact that the whole of the online community acts as an
early threat detector submitting fresh samples to VirusTotal. Thanks to the approach of
family-based analysis templates, more in-depth and accurate alerts can be produced than
with other current approaches like LEXSI’s or F-Secure’s setups, reducing the impact of
false positives and providing a very interesting feed of data theft infrastructures to be
taken down.

The setup has been running non-stop with the 10 family templates mentioned in this
document for over 6 months, at present it is giving service to something more than 20
world wide banks, some of them being the largest financial entities of their respective
headquarter countries. Rather than for intelligence and threat landscape purposes, banks
have shown a special interest in this early warning system so as to then hire shutdown
services to neutralize the trojan network infrastructures reported in BANOMAD’s alerts.

FP7-ICT-216026-WOMBAT 73

6 HoneyBuddy

The popularity of instant messaging (IM) services has recently attracted the interest of
attackers that try to send malicious URLs or files to the contact lists of compromised
instant messaging accounts or clients. HoneyBuddy, a honeypot-like infrastructure for
detecting malicious activities in IM networks, offers a systematic characterization of IM
threats based on the collected information. The above infrastructure finds and adds
contacts to its honeypot messengers by querying popular search engines for IM contacts
or by advertising its accounts on contact finder sites. Our deployment has shown that
with over six thousand contacts we can gather between 50 and 110 malicious URLs per
day as well as executables. Our experiments show that 21% of our collected executable
samples were not gathered by other malware collection infrastructures, while 93% of
the identified IM phishing domains were not recorded by popular blacklist mechanisms.
Furthermore, our findings show that the malicious domains are hosted by a limited
number of hosts that remain practically unchanged throughout time.

6.1 Attacks on Instant Messaging networks

The high population of IM networks makes them an attractive target for attackers that
try to exploit them for malicious purposes, such as spreading malware and scamming.
We identify four different scenarios of attacks on IM networks.

Malware infection. Recent malware instances [3] can attach to a victim’s instant
messaging client and start sending URLs that point to malicious websites, or spread
themselves by sending executables. In the most common case the malware instance logs
in to the IM network, randomly selects users from the victim’s contact list, sends the
malicious URLs or files and then immediately logs out. In order to be more appealing
to potential victims, the URLs point to domains whose name contains the username
of the recipient, for example http://contact_username.party-pics.com . The vast
majority of the attack campaigns we have detected send messages in English. However,
we believe that attackers will soon shift towards localized messages, as is the case with
one localized phishing site that we have detected.

Compromised accounts. Attackers can also use compromised credentials to log in
as several different users and flood the victims’ contact lists. Many services, like MSN,

74

http://contact_username.party-pics.com

6.2 MyIMhoneypot, a detection service

use unified credentials for e-mail and instant messaging, making life easier for attackers.
Attackers can harvest IM accounts by setting up phishing sites for the service, by planting
key-loggers or through social engineering. A relatively known attack campaign is that
of websites advertising a service that can reveal to users if someone has blocked them.
If the user enters her IM credentials in the website, she is redirected to a page from
another domain where nothing happens. Later on, the phishing site owner logs in as the
user and sends messages to the victim’s contact list.

Exploiting weak privacy settings. Even in the absence of malware infection or
stolen credentials, some messengers provide the option to allow incoming messages from
people who are not in the user’s contact list. We tested the latest client versions of the
most popular IM services: MSN live messenger (version 14.0.8089), Skype (version 4.1),
Yahoo (version 10) and AIM (version 7.1). MSN live messenger is the only IM client we
tested that has a privacy setting enabled by default that blocks messages from accounts
not contained in the contact list. Skype, Yahoo and AIM by default allow anyone to send
instant messages to our account, but this setting can be opted-out. Attackers exploit
these settings to send unsolicited messages to IM users.

Exploiting client software. IM client software suffers from the problem of mono-
cultures. Once an exploit is discovered, then automatically millions of clients can be
infected immediately [2]. While in the case of malware infection exploits take advantage
of the IM client to spread, this case involves the attack where the IM client is used to
infect the rest of the machine.

6.2 MyIMhoneypot, a detection service

In this section we present an overview of existing defense measures, and propose a service
for the early detection of attacks targeting instant messaging networks. The existing
defense mechanisms deployed by instant messaging service providers and other vendors,
are insufficient for protecting users from the threats presented in Section 6.1. Anti-virus
products that scan files received from instant messaging file-transfers fail to identify
all malware used by IM attackers, as shown by our findings. Anti-virus vendors could
provide more up-to-date signatures for IM malware by deploying HoneyBuddy for the
early collection of such malware. Furthermore, anti-virus products designed to protect
users from phishing attacks fail to detect 87% of the malicious URLs collected by our
infrastructure. Pop up messages from IM client software that alert users of phishing, that
are triggered by all messages that contain a URL even if it is benign, are ineffective since
users tend to ignore warnings that are presented even for well-known benign URLs. We
propose that IM clients should correlate received URLs with blacklists and alert users

FP7-ICT-216026-WOMBAT 75

6 HoneyBuddy

only when they belong to malicious domains. We present our client-side mechanism
that is orthogonal to existing defense mechanisms; myIMhoneypot, an early detection
service that can inform users if their accounts or IM clients have been compromised.
IM attacks try to spread through the victim’s contact list by sending either URLs or
files to the victim’s friends. Any user that wants to check if her account is compromised
registers with the myIMhoneypot service. Upon registration, the service creates a unique
IM honeypot account (for example, a new MSN account that will be used as a decoy
account) and informs the user to add that honeypot account to her contact list. As the
user will never start a conversation with the honeypot account but an IM attacker will
(with great probability), the user can check if something is wrong by visiting the website
of the service and checking the conversation logs with her unique honeypot account.
If there are entries in the conversation log of her decoy account like the example in
Figure 6.1, then there is a strong indication that her IM client or credentials have been
compromised.

The reason that a unique IM account must be created per user is twofold. First, if
the service has only one or a few honeypot accounts then they can be easily blacklisted
(recall that anyone can subscribe to the service, including attackers). The attacker
should not be able to distinguish whether a contact is a decoy account or not. The
service creates accounts with human-like nicknames. Second, the attacker can try to
hack into the service’s accounts once she knows the user is a subscriber. Using a unique
honeypot per user makes the attacker’s life a lot harder. The attacker cannot correlate
common friends across accounts and has to try to compromise all the accounts in the
user’s contact list. Even if she does that, most IM services (at least MSN and AIM) do
not keep conversation logs at the server side so she cannot find her spam messages in
the logs of decoy accounts.

The attacker could guess the decoy accounts by checking the locally stored conversa-
tion logs. Normally, a user will have conversations with all members of her contact list
except the honeypot account. Therefore, the attacker could avoid sending messages to
accounts for which no conversation logs were found. This attack can be easily circum-
vented by planting a fake conversation log on the user’s side.

The myIMhoneypot service has a limitation. For each registered user, a new IM
account must be created in order to be used as a decoy. This process involves the solution
of CAPTCHAs [1] which prevents us from making it completely automatic. Although
we could claim that MyIMhoneypot is a legal case for laundering CAPTCHAs, we did
not implement it for obvious reasons. For the time being, we have to manually create
decoy accounts. However, we propose that this service should be implemented by each
IM provider as a means of protection for its users. We implemented a prototype of

76 SEVENTH FRAMEWORK PROGRAMME

6.2 MyIMhoneypot, a detection service

Figure 6.1: A screenshot of the log presented to a user whose IM account has been
compromised.

myIMhoneypot for the MSN platform. We call it myMSNhoneypot and it can be found
at www.honeyathome.org/imhoneypot .

We also provide a service that does not require user registration. Users can sub-
mit URLs they receive in instant messages to correlate them with our database. As
mentioned before, suspicious URLs usually contain the target’s username and, thus,
searching for an identical URL in our database would rarely result in a match. There-
fore, the service searches our database for any URL that has the same top level domain
with that of the submitted URL, which is an indication that they might belong to the
same campaign. If a match is found the user is presented with a small report containing
the date the URL was first caught by HoneyBuddy and the category it was assigned by
our classifier. Based on our findings we assign the submitted URLs with a value of how
likely they are to still pose a threat to users depending on the time window between
being collected by HoneyBuddy and being submitted by the user.

FP7-ICT-216026-WOMBAT 77

www.honeyathome.org/imhoneypot

7 Conclusion

The document presented several early warning services, collectively forming the wombat
Early Warning System. The services are separate, but – as previous chapters show – they
are in fact connected in a number of ways thanks to the cooperation between consortium
members. The systems make use of the same datasets (e.g. Wepawet, HoneySpider
Network, Anubis). Some use similar interfaces (FIRE and Exposure). The integration
of the HoneySpider Network with FIRE even merited a separate chapter.

It is clear, why the systems do not naturally blend well together. FIRE and Exposure
could, in principle, be remade into a single, modular system – they share the same gen-
eral audience (mostly security specialists) and while the monitored phenomena differ,
the presentation of results follows similar design. The BANOMAD system, however, has
a completely different scope and audience – it is a system aimed specifically at moni-
toring of the security of Internet banking. The HoneyBuddy myIMhoneypot needs an
even simpler interface, as its target group includes average Internet (specifically Instant
Messaging) users.

The presented early warning solutions are innovative and useful. They offer previously
unavailable alerting capability. The presented results show that the systems work well.
The research presented in this deliverable completes the Early Warning System part of
Workpackage 5.

78

Bibliography

[1] CAPTCHA: Telling Humans and Computers Apart Automatically. https://
captcha.net/.

[2] Vulnerability in PNG Processing Could Allow Remote Code Execution. http:
//www.microsoft.com/technet/security/bulletin/MS05-009.mspx.

[3] W32.Bropia. http://www.symantec.com/security_response/writeup.jsp?
docid=2005-012013-2855-99&tabid=2.

[4] Internet Systems Consortium. https://sie.isc.org/, 2011.

[5] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building a
Dynamic Reputation System for DNS. In 19th Usenix Security Symposium, 2010.

[6] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Malware.
In 15th European Institute for Computer Antivirus Research (EICAR 2006) Annual
Conference, April 2006.

[7] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. EXPOSURE: Finding Malicious
Domains Using Passive DNS Analysis. In 18th Symposium on Network and Dis-
tributed System Security (NDSS), 2011.

[8] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis of drive-by-download
attacks and malicious javascript code. In Proceedings of the 19th international
conference on World wide web, WWW, 2010.

[9] B. Krebs. Naming and Shaming ’Bad’ ISPs. http://krebsonsecurity.com/2010/
03/naming-and-shaming-bad-isps/, 2010.

[10] B. Krebs. Takedowns: The Shuns and Stuns That Take the Fight to the Enemy.
McAfee Security Jouranl, (6), 2010.

[11] R. Spoor, P. Kijewski, and C. Overes. The honeyspider network: Fighting client-side
threats. In First, Vancouver, 2010.

79

https://captcha.net/
https://captcha.net/
http://www.microsoft.com/technet/security/bulletin/MS05-009.mspx
http://www.microsoft.com/technet/security/bulletin/MS05-009.mspx
http://www.symantec.com/security_response/writeup.jsp?docid=2005-012013-2855-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2005-012013-2855-99&tabid=2
https://sie.isc.org/
http://krebsonsecurity.com/2010/03/naming-and-shaming-bad-isps/
http://krebsonsecurity.com/2010/03/naming-and-shaming-bad-isps/

Bibliography

[12] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer,
C. Kruegel, and G. Vigna. Your botnet is my botnet: Analysis of a botnet takeover.
In ACM Conference on Computer and Communication Security (CCS), 2009.

[13] B. Stone-Gross, A. Moser, C. Kruegel, K. Almaroth, and E. Kirda. FIRE: FInding
Rogue nEtworks. In Annual Computer Security Applications Conference (ACSAC),
2009.

[14] T.Holz, C. Gorecki, K. Rieck, and F. Freiling. Measuring and Detecting Fast-Flux
Service Networks. In Annual Network and Distributed System Security Symposium
(NDSS), 2008.

80 SEVENTH FRAMEWORK PROGRAMME

	Introduction
	FIRE: FInding Rogue nEtworks
	Improved Data
	Data Analysis
	Autonomous Systems
	Threat Lifetime

	HoneySpider Network -- FIRE integration
	Primary mode of use -- clash of philosophies
	Problem of false positives
	Identification of backend servers
	Summary

	EXPOSURE (Eurecom)
	Finding Malicious Domains Using Passive DNS Analysis
	The Approach of Exposure
	Extracting DNS Features for Detection
	Architecture of EXPOSURE
	Real-Time Deployment

	Evaluation of Exposure
	DNS Data Collection for Offline Experiments
	Experiments with the Offline Data Set
	Real-World, Real-Time Detection with Exposure

	Real-Time Deployment of Exposure

	BANOMAD: BANking Oriented Malware Analysis Droid
	What is a banking trojan?
	How do banking trojans work?
	Data filtering
	Entity monitoring
	Data Harvesting
	Data forwarding
	Money theft

	BANOMAD: VirusTotal based early warning system for banking trojan and targeted attacks
	Keystone hypothesis
	Functional blocks
	Image dump sandbox
	BANOMAD-YARA: banker family identifier
	Behavioural analysis sandbox
	Python analysis framework
	Report generator

	Setup output
	Experimental results
	Current research
	Limitations
	Conclusion

	HoneyBuddy
	Attacks on Instant Messaging networks
	MyIMhoneypot, a detection service

	Conclusion

